
PHYSICAL REVIEW

LETTERS

VOLUME 86 26 MARCH 2001 NUMBER 13
From the Quantum Zeno to the Inverse Quantum Zeno Effect
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The temporal evolution of an unstable quantum mechanical system undergoing repeated measurements
is investigated. In general, by changing the time interval between successive measurements, the decay
can be accelerated (inverse quantum Zeno effect) or slowed down (quantum Zeno effect), depending on
the features of the interaction Hamiltonian. A geometric criterion is proposed for a transition to occur
between these two regimes.
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The temporal evolution of the survival probability of a
quantum mechanical unstable system is characterized by
a short-time quadratic behavior, an intermediate approxi-
mately exponential decay, and a long-time power tail [1].
The short-time region has attracted the attention of physi-
cists since quite some time ago, because it leads, under
particular conditions, to the quantum Zeno effect (QZE)
[2], by which frequent observations slow down the evo-
lution. However, it has recently been pointed out that by
exploiting the short-time features of the quantal evolution
one can also accelerate the decay [3–6]. We will call this
phenomenon inverse quantum Zeno effect (IZE).

In this Letter we shall analyze how the Zeno–inverse
Zeno transition takes place when the frequency of obser-
vations is changed. For an oscillating quantum mechanical
system, whose Poincaré time is finite, it is not difficult to
obtain a QZE. On the other hand, when the system is un-
stable, the situation is much more interesting and involved:
in general, one can obtain both a QZE or an IZE depending
on the features of the interaction Hamiltonian.

Let us summarize the main features of the QZE. Pre-
pare, at t � 0, a quantum system in some (normalizable)
initial state. A QZE typically arises if one performs a series
of “measurements,” at time intervals t, in order to ascer-
tain whether the system is still in its initial state. If P�t�
denotes the undisturbed survival probability in the initial
state, after the Nth measurements the survival probability
reads
0031-9007�01�86(13)�2699(5)$15.00
P�N��t� � P�t�N � exp�2g�t�t� , (1)

where t � Nt is the total duration of the experiment and
we have introduced an effective decay rate g�t�, which is
defined through the last equality. Notice that the far right-
hand side (rhs) represents an exponential “interpolation” of
P�N��t� and that g is in general t dependent: for example,
if the short-time behavior is P�t� � exp�2t2�t

2
Z�, where

tZ is the so-called Zeno time, given by the energy dis-
persion in the initial state, one easily checks that g�t� �
t�t

2
Z. Moreover, one expects to recover the “natural” life-

time g
21
0 , in agreement with the Fermi “golden” rule, for

sufficiently long time intervals t. Equation (1) is valid
; t � Nt and therefore, in particular, for t � t (namely,
when a single measurement is performed: N � 1). Hence

exp�2g�t�t� � P�t� � jx�t�j2, (2)

so that g�t� is the decay rate of an exponential curve that
intersects the undisturbed survival probability exactly at
time t [1,7]. In Eq. (2), x�t� is the survival amplitude in
the initial state. From Eq. (2) one gets the handy formula

g�t� � 2
1
t

lnP�t� � 2
2
t

lnjx�t�j � 2
2
t

Re�lnx�t�� ,

(3)

expressing the effective lifetime in terms of the free sur-
vival probability or amplitude.
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We now ask whether it is possible to find a time t� such
that

g�t�� � g0 . (4)

If such a time exists, then by performing measurements at
time intervals t� the system decays according to its natural
lifetime, as if no measurements were performed. Figure 1
illustrates an example in which such a time exists: if the
curves e2g0t and P�t� intersect, their intersection is at t�.
[Notice that there can be more than one intersection; i.e.,
Eq. (4) can have more solutions, e.g., if P�t� oscillates
around e2g0t [8]. In such a case, t� is defined as the
smallest solution.] It is apparent that if t , t� one obtains
a QZE. Vice versa, if t . t�, one obtains an inverse Zeno
effect. In this sense, t� can be viewed as a transition
time from a quantum Zeno to an inverse Zeno regime.
Paraphrasing Misra and Sudarshan [2], we can say that
t� determines the transition from Zeno (who argued that a
sped arrow, if observed, does not move) to Heraclitus (who
replied that everything flows). We shall see that in general
it is not always possible to determine t�: Eq. (4) may have
no finite solutions. This depends on several features of the
evolution law and will be discussed in the following.

We shall work in a quantum field theoretical framework.
Consider the Hamiltonian (h̄ � 1)

H � H0 1 Hint � vaja� 	aj 1
Z

dv vjv� 	vj

1
Z

dv g�v� �ja� 	vj 1 jv� 	aj� , (5)

where 	a j a� � 1, 	a jv� � 0, and 	v jv0� �
d�v 2 v0�. It describes the interaction of a normalizable
(discrete) state ja� (the initial state) with a continuum
of states jv� into which it can decay; g�v� (taken real
for simplicity) is the form factor of the interaction. The
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FIG. 1. (a) Determination of t�. The full line is the survival
probability, the dashed line the exponential e2g0t , and the dotted
line the asymptotic exponential Ze2g0t [see Eq. (10) in the fol-
lowing]. (b) Quantum Zeno vs inverse Zeno effect. The dashed
line represents a typical behavior of the survival probability P�t�
when no measurement is performed: the short-time Zeno region
is followed by an approximately exponential decay with a natu-
ral decay rate g0. When measurements are performed at time
intervals t, we get the effective decay rate g�t�. The full lines
represent the survival probabilities and the dotted lines their ex-
ponential interpolations, according to (1). For t1 , t� , t2
the effective decay rate g�t1� �g�t2�� is smaller (QZE) [larger
(IZE)] than the “natural” decay rate g0. When t � t� one re-
covers the natural lifetime, according to (4).
2700
survival amplitude and probability of finding the system
still in the initial state ja� at t . 0 read

x�t� � 	a jc�t��, P�t� � jx�t�j2, (6)

respectively, where jc�t�� is the state at time t, whose evo-
lution is naturally restricted to the Tamm-Duncoff sector
spanned by 
ja�, jv��. The survival amplitude is conve-
niently written as the inverse Fourier-Laplace transform of
the propagator x�E� � i	aj�E 2 H�21ja�,

x�t� �
Z

B

dE
2p

e2iEtx�E�,

x�E� �
i

E 2 va 2 S�E�
,

(7)

where the Bromwich path B is a horizontal line ImE �
const . 0 in the half plane of analyticity of the transform
(upper half plane) and the self-energy function S�E� is
expressed in terms of the form factor

S�E� �
Z

dv
j	ajHintjv�j2

E 2 v
�

Z
dv

g2�v�
E 2 v

. (8)

A straightforward analysis in terms of the resolvent of the
Hamiltonian yields

x�t� �
p
Z e2g0t�22ia�t� 1 xcut�t�,

Z � j1 2 S0�Epole�j22,
(9)

where the exponential term (first term) is due to the con-
tribution of a simple pole Epole on the second Riemann-
ian sheet in the complex energy plane, while the second
term is the result of a contour integration [1]. The lifetime
g

21
0 is given by the Fermi golden rule, computed accord-

ing to the Weisskopf-Wigner approximation. The quantity
Z is the square of the residue of pole of the propagator
(yielding wave function renormalization in quantum field
theory) and a a (real) linear function of time. Note that,
although for a stable state Z , 1 (due to probability con-
servation in the Källén-Lehmann representation), for an
unstable state Z is unconstrained. The cut contribution is
of order �coupling constant�2 and modifies the exponential
law both at short and long times, yielding the characteristic
quadratic and power-law behaviors. The survival probabil-
ity reads then

P�t� � jx�t�j2 � Ze2g0t 1 other terms. (10)

The above results are of general validity.
The following theorem holds: in general, a sufficient

condition for the existence of a solution t� of Eq. (4) is
Z , 1. The best proof of this proposition is obtained
by graphical inspection. The case Z , 1 is shown in
Fig. 1(a): P�t� and e2g0t must intersect, since according
to (10), P�t� � Ze2g0t for large t [9], and a finite solu-
tion t� can always be found. The other case, Z . 1, is
shown in Fig. 2: a solution may or may not exist, depend-
ing on the model. Interestingly, the above theorem shows
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FIG. 2. Study of the case Z . 1. The full line is the survival
probability, the dashed line the renormalized exponential e2g0t ,
and the dotted line the asymptotic exponential Ze2g0t . (a) If
P�t� and e2g0t do not intersect, a finite solution t� does not
exist. (b) If P�t� and e2g0t intersect, a finite solution t� exists.
(In this case there are always at least two intersections.)

that renormalization plays an important role in the Zeno
problem, when one deals with unstable systems.

In order to check our general conclusions and investigate
the primary role played by the specific features of the
interaction, let us first focus on a Lorentzian form factor

g�v� �
l
p

p

s
L

v2 1 L2 . (11)

This describes, for instance, an atom-field coupling in a
cavity with high finesse mirrors [10] and has the advan-
tage of being solvable. (We stress that in this case the
Hamiltonian is not lower bounded and we expect no de-
viations from exponential behavior at very large times,
since Khalfin’s argument [11] is circumvented.) The
role of form factors in the context of the QZE was stud-
ied in earlier papers [3,12,13]. In particular, Kofman and
Kurizki also considered the Lorentzian case. One eas-
ily obtains S�E� � l2��E 1 iL�, whence the propagator
x�E� � i�E 1 iL����E 2 va� �E 1 iL� 2 l2� has two
poles in the lower half energy plane and yields

x�t� �
va 1 D 1 i�L 2 g0�2�
va 1 2D 1 i�L 2 g0�

e2i�va1D�te2g0t�2

1
D 2 ig0�2

va 1 2D 1 i�L 2 g0�
eiDte2�L2g0�2�t , (12)

where D � 2va�1 2

q
�V2

1 1 V2��2v2
a��2 and g0 �

L 2

q
�V2

1 2 V2��2, with V2 � v2
a 1 4l2 2 L2 and

V
2
1 �

p
V4 1 4v2

aL2. In this case

Z �
�va 1 D�2 1 �L 2 g0�2�2

�va 1 2D�2 1 �L 2 g0�2 . (13)

By plugging (12) into (3) one obtains the effective decay
rate, whose behavior is displayed in Fig. 3 for different
values of the ratio jvaj�L.

These curves show that for large values of jvaj (in units
L) there is indeed a transition from a Zeno to an inverse
Zeno (“Heraclitus”) behavior: such a transition occurs at
t � t�, solution of Eq. (4). However, for small values of
jvaj, such a solution ceases to exist. The determination
0 1 2 3 4
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FIG. 3. Effective decay rate g�t� for the model (11), for l �
0.1 and different values of the ratio jvaj�L (indicated). The
horizontal line shows the “natural” decay rate g0: its intersection
with g�t� yields the solution t� of Eq. (4). The asymptotic value
of all curves is g0, as expected. A Zeno (inverse Zeno) effect is
obtained for t , t� (t . t�). Notice the presence of a linear
region for small values of t and observe that t� does not belong
to such linear region as the ratio jvaj�L decreases. Under a
certain threshold, given by Eq. (14) in the weak coupling limit
of the model (and in general by the condition Z � 1), Eq. (4)
has no finite solutions: only a Zeno effect is realizable in such
a case.

of the critical value of jvaj for which the Zeno– inverse
Zeno transition ceases to take place discloses an interesting
aspect of this issue. The problem can be discussed in
general, but for the sake of simplicity we consider the
weak coupling limit (small l): in this case the other terms
in (10), arising from the second addendum in (12), are of
order l2 and quickly vanish for large t (g0 is of order l2).
Moreover, by (13) the inequality Z , 1 yields

v2
a . L2 1 O�l2� . (14)

The meaning of this relation is the following: a sufficient
condition to obtain a Zeno– inverse Zeno transition is that
the energy of the decaying state be placed asymmetrically
with respect to the peak of the form factor (bandwidth).
If, on the other hand, va � 0 (center of the bandwidth),
no transition time t� exists (see Fig. 3) and only a QZE is
possible: this is the case analyzed in Fig. 2(a).

There is more: Equation (12) yields a time scale. In-
deed, from the definitions of the quantities in (12) one
gets g0�2 , L 2 g0�2, so that the second exponential in
(12) vanishes more quickly than the first one [14]. If the
coupling is weak, since g0 � O�l2�, the second term is
very rapidly damped so that, after a short initial quadratic
region of duration L21, the decay becomes purely expo-
nential with decay rate g0. This is an important point,
often misunderstood in the literature: the quadratic behav-
ior P�t� � exp�2t2�t

2
Z� is valid not for times t & tZ �

l21, but rather for much shorter times t & L21. For
t & 1�L (which is, by definition, the meaning of “short”
times in a quantum Zeno context), we can use the linear
approximation
2701
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g�t� �
t

t
2
Z

for t & 1�L , (15)

where t
22
Z � 	ajH2

intja� �
R

dv g2�v�. When the lin-
ear approximation (15) applies up to the intersection (i.e.,
jvaj ¿ L) then

t� � g0t2
Z . (16)

When the linear approximation does not hold, the rhs of
the above expression yields a lower bound to the tran-
sition time (4). The quantity g0t

2
Z is also relevant in

different contexts and has been called “jump time” by
Schulman [7].

The conclusions obtained for the simple model (11)
are of general validity. Indeed, the form of the “rotat-
ing wave” interaction Hamiltonian (5) is a very general
one [15]. In general, in Eq. (5), for any g�v�, we as-
sume that va . vg, where vg is the ground energy of the
continuous spectrum, and regard v as a collective index
that can include some discrete variables (such as polar-
ization in the case of photons), but must include at least
a continuous one. The matrix elements of the interaction
Hamiltonian depend, of course, on the physical model con-
sidered. However, for physically relevant situations, the
interaction smoothly vanishes for small values of v 2 vg

and quickly drops to zero for v . L, a frequency cutoff
related to the size of the decaying system and the char-
acteristics of the environment. This is true both for cavi-
ties [10] and for typical electromagnetic decay processes
in vacuum, where the bandwidth L � 1014 1018 s21 is
given by an inverse characteristic length (say, of the order
of Bohr radius) and is much larger than the (natural) in-
verse lifetime g0 � 107 109 s21 [16].

For form factors that are roughly symmetric, all the
conclusions drawn for the Lorentzian model remain valid.
The main role is played by the ratio vag�L (vag � va 2

vg). In general, the asymmetry condition (14) becomes
vag , L and is satisfied if the energy va of the unstable
state is sufficiently close to the threshold. In fact, from the
definition of the Zeno time tZ one has

t22
Z �

Z
dv g2�v� � g2�v̄�L , (17)

where v̄ is defined by this relation and is of order vmax,
the energy at which g�v� takes the maximum value. Note
that for va sufficiently close to the threshold vg one has
g�v̄� ¿ g�va�, the time scale g0t

2
Z is well within the

short-time regime, namely

g0t2
Z �

2pg2�va�
g2�v̄�L

ø
1
L

, (18)

where the Fermi golden rule g0 � 2pg2�va� has been
used, and therefore the estimate (16) is valid.

On the other hand, for a system such that vag � L (or,
better, va � center of the bandwidth), t� does not nec-
essarily exist and usually only a Zeno effect can occur.
2702
In this context, it is useful and interesting to observe that
the Lorentzian form factor (11) in (5) yields, in the limit
g2�v� � l2d�v 2 va�, the physics of a two level system.
This is also true in the general case, for a roughly symmet-
ric form factor, when the bandwidth L ! 0. In such a
case, the physical conditions leading to QZE are readily
realizable [17] (and no transition to IZE is possible).

Some final comments are in order. The present analy-
sis has been performed in terms of instantaneous mea-
surements, according to the Copenhagen prescription. Our
starting point was indeed Eq. (1). We cannot help feeling
that such a formulation of the QZE is unsatisfactory, even
in the simplest case of two level systems [18]. A more
exhaustive formulation that takes into account the state of
the detection system and the physical duration of the mea-
surement process is required. This approach, performed
in terms of “continuous” measurements [3,5,7,19,20] cir-
cumvents the (very subtle) conceptual problem of state
preparation, which affects most field theoretical formula-
tions of the QZE. The approach we propose could lead
to new ideas for an experimental verification of these ef-
fects: the transition between the two regimes investigated
in this paper (QZE and IZE) and the occurrence of QZE
for bona fide unstable systems can be investigated only by
scrutinizing the general features of the form factors of the
interaction.
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