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Comment on “Breakdown of Bohr’s
Correspondence Principle”

In Ref. [1], it is shown that the Bohr’s Correspondence
Principle (BCP) breaks down “in all quantum systems in
which the asymptotic interaction between the fragments
behaves as 2Cn�rn with n . 2.” We show here that this
failure is due to the use of a not rigorous form of BCP, and
we give a correct form of BCP.

BCP is defined in Ref. [1] as “the expectation that the
semiclassical approximation works better for states with
greater quantum numbers.” This form is easily violated,
for instance, by an anharmonic 1D oscillator. The semi-
classical quantization condition is excellent for the low ly-
ing levels, if the potential is accurately harmonic, and will
be less accurate for some higher levels, if the semiclassical
validity condition is locally violated for these levels.

A strict form of BCP should involve the comparison
of classical and quantum dynamics at a fixed energy E,
in the limit h̄ ! 0. Because it is difficult to apply the
semiclassical approximation for nonseparable problems in
larger dimensions, we consider only 1D problems. A time-
independent form of BCP is the following: if a�r� is any
smooth function of r , for a given energy E, the quantum
and classical averages of this function tend toward the
same limit when h̄ ! 0. The classical average is the time
weighted average

�a�cl �
I

a�r� dt�
I

dt ,

with dt � dr�y�r�, where y�r� is the velocity. The quan-
tum average is

�a�q �
Z

a�r� jC�r�j2 dr

¡ Z
jC�r�j2 dr ,

where C�r� is the wave function. The quantum average is
always defined in the continuum. In the region of bound
levels, it is defined only when h̄ is such that E is the energy
of a bound level. If the JWKB approximation applies
everywhere, the two averages are easily shown to be equal
when h̄ ! 0.

In the case of an interaction of the form 2Cn�rn with
n . 2, the JWKB approximation fails near the dissocia-
tion energy E � 0. In the continuum (E . 0), this is the
quantum threshold regime described by Wigner [2]. Fol-
lowing Julienne and Mies [3], this regime extends over
an energy range extending from E � 0 up to the quan-
tum threshold energy EQ . EQ scales like h̄g with the ex-
ponent g � 2n��n 2 2� larger than 2. For bound states,
a similar problem arises, described first by Le Roy and
co-workers [4] and also by [5,6]. This is the mirror image
for bound states of the quantum threshold regime in the
continuum [7] extending over a comparable energy range.
For any fixed energy E fi 0, when h̄ is sufficiently small,
EQ , jEj and our formulation of BCP will be valid.

The case E � 0 requires a special discussion. At large
r , the classical weight is given by 1�y�r� ~ rn�2, while the
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quantum weight is the square of the zero energy wave func-
tion with an asymptotic behavior given by C�r� ~ �cr 1

d� where c and d are constant. These two weights are
different and, at first sight, the resulting averages should
be different, but as the integral of these two weights are
both divergent when r ! `, the two averages are of lim-
ited interest: for instance, they vanish for any function
a�r� which differs from zero only in a finite r range. The
E � 0 case is a limiting case between finite and infinite
classical trajectories, between discrete levels and contin-
uum in quantum mechanics, and this character explains an
apparent failure of BCP in this case.

Finally, the important point is the existence of two non-
commuting limits in the mathematical sense (E ! 0 and
h̄ ! 0) and the form of BCP used by Gao [1] consists pre-
cisely in letting the energy go close to zero at a fixed h̄
value. The rigorous time-independent form of BCP pro-
posed here is valid everywhere except for zero energy. Fi-
nally, the analytical results obtained by Gao will surely
help and complement our understanding of the highest vi-
brational levels which are highly nonclassical, as shown
by previous works [4–7].
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