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Self-Organized Critical Drainage Networks
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We introduce time-dependent boundary conditions in a model of drainage network evolution based on
local erosion rules. The changing boundary conditions prevent the model from becoming stationary; it
approaches a state where fluctuations of all sizes occur. The fluctuations in the sizes of the drainage areas
show power law behavior with an exponent that differs significantly from that of the static distribution
of the drainage areas. Thus, the model exhibits self-organized criticality and proposes a novel concept
for predicting fractal properties of drainage networks.
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Introduction.—Fractal properties of drainage networks
have been investigated in both field studies and modeling;
three types of models were established for understanding
them.

(i) Random walk approaches [1] are based on random
flow directions at the nodes of a discrete grid. These mod-
els were the first to generate fractal networks with appar-
ently realistic properties, but further studies [2] showed
that this coincidence is not as good as it seemed.

(ii) Simplified landform evolution models, especially
that of Takayasu and Inaoka [3], use local erosion rules
where the erosion rate at the nodes of a discrete grid de-
pends on discharge and slope. The simulation starts at
an arbitrary, e.g., random surface and ends up at a steady
state with quite realistic fractal properties. The evolution
of the network looks like a tree growing from the outlet of
the basin.

(iii) The concept of optimal channel networks was in-
troduced by Rinaldo et al. [4]; it is based on local erosion
rules, too. In contrast to landform evolution models, only
the final, equilibrated states are considered; among them
“optimal” networks are computed by minimizing the to-
tal energy dissipation in the system. This concept predicts
the fractal properties of natural drainage networks well [2],
but the question how nature manages to optimize energy
expenditure as a result of a landform evolution process is
still open.

Most of these approaches contain random components,
but assume constant model parameters such as precipita-
tion rates and erodibilities. In contrast, inhomogeneity is
essential in many geological phenomena. The influence
of random variations in the model parameters has been
investigated, and inhomogeneity seems to improve the re-
sults with reference to the properties of real drainage net-
works [5,6].

After the framework of self-organized criticality (SOC)
was introduced by Bak et al. [7], it has been established as
an explanation for the occurrence of fractal patterns in vari-
ous processes. The idea of interpreting drainage networks
as a SOC phenomenon is tempting, but there is a funda-
mental problem: SOC requires a quasisteady state where
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fluctuations of all sizes occur, and the fractal size distribu-
tion of these fluctuations is the spatial fingerprint of SOC
systems. In contrast, the approaches discussed above are
based on or result in stationary patterns, and their fractal
properties are static. Takayasu and Inaoka [3] considered
the behavior of their model as a new type of SOC, but in-
terpreted it as a fractal growth process later. Discussion
has shown that it is far away from the SOC concept in its
original sense [8]. The random-pinning model [6] intro-
duces some kind of time-dependent randomness which pre-
vents the networks from becoming stationary, but a clear
link to SOC through a scale-invariant distribution of fluc-
tuations has not been established yet.

A simple erosion model with variable boundary
conditions.—We start at an erosion model that is similar
to Takayasu and Inaoka’s [3] approach. A grid is defined,
and precipitation acts uniformly on the nodes. Each node
delivers its discharge to that neighbor where the steepest
downslope gradient occurs. Hexagonal [3] and quadratic
[4,9] grid topologies are common, and we use a quadratic
lattice where diagonal flow directions are allowed, too.

Expressions for the erosion rate can be partly derived
from hydrodynamic principles; the most common approxi-
mation is [3,9]
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where Hi is the surface height at the node i, qi the dis-
charge, and Di the slope (in direction of steepest descent).
m and n are positive parameters where n � 2m. Follow-
ing Takayasu and Inaoka [3] we choose m � 1 and n � 2.
In this case, an implicit time discretization of the slope gra-
dients Di in Eq. (1) can be performed if the discharges
are once computed. This avoids instabilities that may
propagate in the upstream direction, so that we do not need
to limit the erosion rate at large discharges and slopes as
Takayasu and Inaoka did.

Obviously, the rules of flow routing do not work if the
surface has local depressions. They can be considered as
lakes and be filled up with water [3,9]. However, they do
not play any part in our model in the long term run, so
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we simply assume that the water vanishes at local minima
without any erosive action.

Various boundary conditions can be posed. We first
focus on single-outlet networks where one node at the
boundary is chosen as the outlet of the basin. At this outlet,
a constant erosion rate is applied, while that at the other
nodes is determined by the erosion rule [Eq. (1)]. We call
this approach “standard model” in the following.

As expected, this model finally leads to a steady state
where the erosion rates of all nodes are the same. This
is not realistic; nature provides several influences that pre-
vent the earth’s surface from reaching equilibrium, such
as temporally variable erodibility due to different layers of
bedrock, side erosion (meandering), and changing tectonic
conditions.

Our approach introduces time-dependent boundary con-
ditions by assuming that the location of the outlet changes
through time. After the surface has become stationary, we
choose a new outlet at the boundary randomly, so that there
are two outlets at this time. The new outlet is eroded at
the same predefined rate as the old one was, while erosion
at the old one ceases. As a result, the drainage area of the
new outlet grows, while that of the old outlet decreases.
Finally, the new outlet captures the whole basin, and the
old one is no longer active. After the surface has become
stationary again, a new outlet is chosen and the procedure
is repeated. Although this approach does not represent any
of the natural processes mentioned above directly, it can be
seen as a simple representation of changes in the environ-
ment of a drainage basin.

Results.—The results presented in this section are ob-
tained from a simulation on a 128 3 128 lattice. In order
to avoid effects of the random initial condition, all results
were skipped until each node had changed its drainage di-
rection at least 25 times; this was the case after about 1300
stationary networks were computed. Then, 5000 station-
ary networks were computed and analyzed.

Figure 1 shows a series of 12 consecutive equilibrated
networks. Those parts which have changed since the pre-
vious steady state are marked black; grey segments have
persisted. Obviously, only parts of the network are reor-
ganized as a response to introducing a new outlet; parts
of these alterations simply result from changing the flow
direction while the valley itself remains. However, more
than 90% of the network are reorganized through these
12 steps. During the whole simulation, each site changed
its drainage direction at least 144 times, and in the mean
394 times. This shows that — although consecutive steady
state networks are not independent — the simulation pro-
vides a sufficient statistics which is not biased by persisting
structures.

Six different fractal properties are observed in nature,
but only three of them are independent [2]. In the fol-
lowing, we use the exponent b of the size distribution
of drainage areas, the exponent h of Hack’s law, and the
length scaling exponent fL for model validation.
2690
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FIG. 1. Series of stationary drainage networks as a result
of changing boundary conditions. Only river segments with
drainage areas A $ 10 are plotted; the linewidths are propor-
tional to A1�4.

Figure 2 shows the cumulative size distribution of the
drainage areas, obtained from considering all nodes of the
5000 simulated networks. Except for a finite size effect
at large areas, the distribution shows power law behavior
for areas larger than 10 nodes: P�A� � A2b , where P�A�
is the probability that the drainage area of a point exceeds
A. The exponent b � 0.46 is at the upper edge of the
observed range b [ �0.41, 0.46� [2,10].

For comparison, the distribution obtained from the
standard model is included in the plot. A total of 1000
networks were obtained by independent simulations with
randomly chosen outlet positions and random initial
surfaces. This model leads to a less proper power law dis-
tribution that looks similar to that of Takayasu and Inaoka
[3]. Depending on the range of fitting, power laws with
various exponents between about 0.4 and 0.5 can be fitted,
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FIG. 2. Size distribution of the drainage areas.
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FIG. 3. Hack’s law.

so that their result b � 0.43 which is just in the middle
of the observed range should not be overinterpreted.

The model reproduces Hack’s law: L � Ah, where L
is the length of the longest river within the drainage area
A, too. Figure 3 shows the average length of the longest
rivers, averaged over small bins. The best-fit power law
leads to h � 0.56 in agreement with the observed range
h [ �0.52, 0.6� [2]. Again, the power law relation is
cleaner than in the standard model.

Figure 4 shows the length scaling of rivers, i.e., the re-
lation between the upstream length L of the convoluted
rivers and the distance d between the considered point and
the river’s source. Observations suggest L � dfL , where
fL [ �1.02, 1.12� [2]. The model yields fL � 1.06; the
convolution of the large rivers is slightly exaggerated com-
pared to the power law.

So far we have obtained a model that predicts the fractal
properties of drainage networks and leads to permanently
changing patterns, but the fractal properties are still static.
In contrast, recognizing SOC behavior requires a fractal
distribution of event sizes.

While the surface evolves continuously, the evolution of
the drainage network, especially of drainage areas, is dis-
continuous. Whenever a node changes its flow direction,
its whole drainage area may switch from one outlet to the
other. Thus, the drainage divide between old and new out-
let migrates in discrete steps during the transition from one
steady state to another. From this point of view, we can in-
terpret every change in network topology as an event. We
define the size of an event as the resulting fluctuation in
drainage area, i.e., the size Ac of the area which switches
from the old outlet to the new one as a result of a change
in drainage direction at one node.

While Ac can be directly obtained by tracing the dis-
charge of the new outlet, distinguishing individual events
requires a more careful numerical treatment than comput-
ing equilibrated networks, especially an adaptive variation
of the time step length. As soon as more than one node
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FIG. 4. Length scaling of the rivers.

changes its flow direction within one time step, two or more
events are mixed up, except for the situation that some sur-
face heights coincide. In case of such a mixing, the time
step must be rejected and be replaced by some smaller
steps until the events are properly separated.

Figure 5 shows the size distribution of these fluctua-
tions in drainage area, monitored over all 5000 transi-
tions. Except for finite size effects, they obey power law
statistics: P�Ac� � A2b

c . The exponent b � 0.70 differs
significantly from that of the static drainage area distribu-
tion (b � 0.46). Thus, this distribution of event sizes is
not just a reflection of the static distribution, but reveals
properties of the dynamic organization process. However,
a verification of this result in field might be impossible.

Thus, our model of drainage network evolution meets
the criteria of SOC. However, we must be aware that the
framework of SOC still lacks a clear definition how events
and their sizes have to be defined. We could also choose
another quantity to be the event size, and it is not clear
at all whether we obtained a power law distribution then,
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FIG. 5. Size distribution of the fluctuations in drainage areas.
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FIG. 6. Distribution of the energy expenditure per node.

too. Moreover, we could switch to a longer time scale and
consider the transition from one steady state to another as
an event, and we cannot tell whether any property of these
events exhibits power law statistics.

Except for the length scaling of the rivers, our model
leads to cleaner fractal properties than the standard model
does, comparably to those of optimal channel networks.
This might be a direct consequence of the permanent reor-
ganization; our networks may simply have more chances
to come close to the state of minimum energy expendi-
ture than those emerging from the standard model. How-
ever, the following analysis shows that this is not the
reason: The normalized average energy dissipation per
node is the difference between the mean surface height
(over the whole lattice) and the outlet’s height. Figure 6
shows the cumulative distribution of this property, obtained
from all 5000 networks, compared to that of the standard
model. Our model even leads to a higher energy dissipa-
tion than the latter does, so our SOC networks are far away
from minimum energy expenditure.

From theory of SOC, this behavior is not really sur-
prising because SOC systems tend to approach a strange
attractor in phase space rather than a distinct, optimized
state. We suspect that there may be a relation between the
location of the strange attractor and the state of minimum
energy expenditure, but this is not clear yet.

Conclusions and open questions.—Starting from local
erosion rules and time-dependent boundary conditions
we have presented a model that explains the fractal prop-
erties of drainage networks as a result of a SOC pro-
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cess. The SOC behavior proposesthe temporal variations
in drainage area as a novel, dynamic scaling property of
river networks.

Our self-organized critical drainage networks do not
minimize energy expenditure, so our model is not just a
physical realization of the principle of minimum energy
expenditure. Nevertheless, there may be a relation between
the strange attractor in self-organized critical network evo-
lution and the state of minimum energy expenditure which
may finally help us to understand the relevance of opti-
mization in drainage network evolution.
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