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An Accurate von Neumann’s Law for Three-Dimensional Foams
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The diffusive coarsening of 2D soap froths is governed by von Neumann’s law. A statistical version
of this law for dry 3D foams has long been conjectured. A new derivation, based on a theorem by
Minkowski, yields an explicit analytical von Neumann’s law in 3D which is in very good agreement
with detailed simulations and experiments. The average growth rate of a bubble with F faces is shown
to be proportional to F1�2 for large F, in contrast to the conjectured linear dependence. Accounting for
foam disorder in the model further improves the agreement with data.
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Researchers in diverse fields have studied foams for very
different reasons [1]. Foams are viscoelastic “soft con-
densed matter” systems, with intriguing rheology [2] and
drainage behavior [3]. They have numerous applications
as detergents, lightweight structural materials, and in oil
recovery [1]. Mathematicians have treated soap films as
approximations to minimal surfaces, and soap froths as
tessellations of space [4,5].

One physical process at work in a foam is diffusive
coarsening, i.e., the growth of the average bubble size due
to gas exchange between bubbles [6]. This process (also
known as aging) is akin to Ostwald ripening [7,8], where
large grains or droplets of condensed phase grow at the
expense of smaller units by material diffusion through the
continuous phase between them. The grains are usually
treated as isolated and spherical, although corrections for
closer proximity can be made [9]. In a dry foam (with little
or no continuous phase), however, the bubbles touch and
fill space, and therefore have polyhedral shape. Diffusion
occurs through films of small thickness bounded by the
faces of neighboring bubbles. In this case, bubble geome-
try and bubble configuration in the foam are important for
the physical process of gas exchange.

In a dry two-dimensional foam, the bubbles are curved
polygons. von Neumann showed [10] that the rate of area
change �a of a given bubble is independent of its size, and
solely dependent on its number of edges n,

�a � D2�n 2 n0� , (1)

where D2 is an effective diffusion coefficient. The relation
is strictly linear in n, and neutral growth (constant area)
occurs for n0 � 6. In three dimensions the evolution of
the volume V of a polyhedral bubble is governed by [8]

V21�3 �V � 2DeffV
21�3

Z
faces

H dA (2)

with another effective diffusion coefficient Deff. The
growth rate is proportional to the integral of the mean
curvature H of the faces, as bubble growth at the expense
of neighboring bubbles is driven by pressure differences
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Dp ~ H (Young-Laplace law). By definition, H . 0
on convex faces, which favor bubble shrinkage � �V , 0�.

A realistic foam consists of a random distribution of
bubbles of many different shapes and sizes (see Fig. 1a),
so that the integral in (2) varies with the individual bubble
geometry. Averaging over all shape variations of polyhe-
dral bubbles with F faces (“F-bubbles”), one arrives at

V
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�VF � DeffG�F� � 2DeffV
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(3)
a statistical von Neumann–like law, where �?�F is the
average over F bubbles, and VF � �V �F . Attempts to
determine the dimensionless function G have included
a maximum-entropy formalism [11], Potts model simu-
lations [12], numerical calculations for idealized froths
[13,14], and experiments [15]. All conclude that there is
a face number F0 where G�F0� � 0, and that G �F� is ap-
proximately or exactly linear around F0 [11]. Numerical
values for F0 range from 13.4 [15] to 15.8 [12]. In this
Letter, we derive an analytical expression for G�F�.

In 1903, Minkowski [16] related the volume, surface
area, and mean curvature of convex bodies to a quantity
we call the caliper radius C�u, w�, cf. [17]. Fix a spheri-
cal coordinate system at an origin O inside the body and
draw a plane normal to the spatial direction �u, w� through
O. Then, C�u, w� is the maximum distance between this
plane and any parallel plane touching the body (Fig. 1b).
Minkowski showed thatZ

4p
C�u, w� dv �

Z
SK

H dA (4)

for any convex body K , where the integrals are over all
solid angles �dv � sinududw� and the total surface area
SK of K , respectively. If K0 is a polyhedron with flat faces,
the mean curvature is localized in the edges. By replacing
the sharp edges by cylindrical sections of infinitesimal ra-
dius, (4) can be evaluated explicitly to obtainZ

4p
C0�u, w� dv �

Z
SK0

H dA �
EX

i�1

1
2

xiLi , (5)
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FIG. 1. (a) Example of a surface evolver
simulation of a spatially periodic poly-
disperse dry foam with 64 bubbles. (b)
Schematic of two adjacent polygonal faces
on a polyhedral foam bubble with centroid
O. The two planes are perpendicular to
the direction �u, w�; the upper one touches
the body at the vertex P. Their distance
is C�u, w�. The shaded area illustrates the
O �L2�R2� fraction of spatial directions for
which C�u, w� on the curved face differs
from its value for a flat face (see text; R is
the radius of curvature of the face).
where E is the number of edges on K0, and xi is the
angle between adjacent face normals (see Fig. 1b), i.e., the
complement of the dihedral angle between the faces that
shares an edge of length Li .

Dry foam bubbles are polyhedra with gently curved
faces, i.e., part of the mean curvature resides in the faces,Z

4p
C�u, w� dv �

Z
faces

H dA 1

EX
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p

6
Li . (6)

We have made use of Plateau’s rule [4] which enforces
dihedral angles of 2p�3 locally at every edge of a foam
bubble. The localized curvature at the edges can therefore
be evaluated by replacing all xi by p�3.

We now compare a foam bubble K and its “skeleton”
polyhedron K0, obtained by replacing the curved faces by
(piecewise) flat faces spanned between the vertices of K .
Following Sire [13], we idealize the curved surfaces of
K to be spherical caps of radius R ¿ L, where L � Li

is a typical edge length. Then, the caliper radii of both
K and K0 can be calculated analytically to leading order
in L�R. For K0, C�u, w� � C0�u, w� is determined by a
plane through a vertex P (see Fig. 1b) for all �u, w�. For K ,
this is still true for most directions, with the exception of
an O �L2�R2� fraction of solid angles around the direction
of each face normal (shaded region in Fig. 1b). The actual
difference between C and C0 for those �u, w� is of order
L2�R (the orders do not depend on the specific spherical
shape of the caps chosen). Therefore,Z

4p
C�u, w� dv 2

Z
4p

C0�u, w� dv � LO ��L�R�3	 ,

(7)
i.e., the two integral caliper radii are equal up to second
order in L�R. Equation (7) is valid for bubbles with con-
cave faces as well, when in the definition of C�u, w� the
outer plane is forced to touch the bubble on the inwardly
curved surface for central solid angles. Thus, (6) is appli-
cable to all foam bubbles, cf. the proof of (4) in [17]. By
using (5)–(7) we find, to second order in �L�R�,Z
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Note that this formula applies to each individual bubble,
whose integral mean curvature (and therefore coarsening
2686
rate) is determined by the dihedral angles of its polyhe-
dral skeleton alone. To find G�F�, an average over all
F-bubbles is necessary. The easiest and most idealized
model is to assume that all F-bubbles are identical regular
polyhedra, having a single type of regular curved face with
hF edges and equal edge lengths LF . From Euler’s and
Plateau’s laws, we get E � 3F 2 6 and hF � 6 2 12�F,
and, from the geometry of the regular polyhedron (every
face subtends a solid angle of 4p�F), one finds

xF � 2 arctan����4 sin2�p�hF� 2 1���1�2	 . (9)

Demanding xF � p�3 for the nongrowing bubble, we ob-
tain F�

0 � 12��6 2 p� arcsin
p

1�3� � 13.397 . . . , a well-
known value conjectured to be the average face number in
a minimal-area foam with equal pressure bubbles [5,18].
A hypothetical regular bubble with F � F�

0 would have
all flat surfaces and still fulfill Plateau’s rules. Obviously,
noninteger F cannot exist, but treating F as a real number
gives insight into the statistical properties of a foam.

The edge length LF of a regular F-bubble of volume
V is determined to leading order in L�R by equating V
to the volume of the polyhedral skeleton. Combining the
result with (3) and (8), the growth function G�F� is found
explicitly and analytically, without free parameters, as

G�F� �
3��F 2 2� tan p

hF
	2�3 tan1�3�xF

2 �
21�3

µ
p

3
2 xF

∂
.

(10)

With (3), this yields an analytical 3D von Neumann law.
The result improves on previous work [13], in that it does
not need distributions of face numbers and solid angles
as input parameters, and yields very good agreement with
observed growth rates and measured F0 in actual foams
[15] as well as in detailed simulations of random foams.
The latter were performed with the surface evolver [19]
and consider up to 1000 bubbles with periodic boundary
conditions, thus avoiding artifacts of peripheral bubble
geometry [14,20]. The structures (see Fig. 1a) are care-
fully relaxed to a stationary state (local minimum of sur-
face area). These simulations do not include gas diffusion
between bubbles, but instead register the pressure differ-
ences Dp, allowing us to calculate G�F�. The symbols in
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FIG. 2. The growth function G �F� of a random foam from sur-
face evolver simulations (circles) and from theory. The simu-
lations are for 512 monodisperse bubbles (a) and 512 strongly
polydisperse bubbles (b) with a log-normal volume distribu-
tion whose width in �logV � space is sV 
 0.86. Simulation
error bars are smaller than the symbol size. The dashed and
dot-dashed lines are the analytical formula (10) and its large-F
asymptote (11). The solid line includes corrections due to the
distributions of edge numbers and edge lengths on the bubbles
characterized by sh � 0.73 (see text).

Fig. 2 stem from simulations for (a) monodisperse (equal-
volume) and (b) polydisperse structures. The dashed line
is the analytical formula (10), which does not distinguish
between the mono- and polydisperse cases. Equation (10)
is surprisingly accurate over the whole range of F in the
simulations, with typical deviations of about 10%. The
relative errors become larger, though, around F0 (Fig. 2a).
Also, the simulated growth rates are somewhat smaller
than the analytical ones, with F0 
 13.82 (monodisperse)
and F0 
 14.00 (polydisperse) instead of F�

0 . While G�F�
is approximately linear in the limited range of F in the
monodisperse case, the function is clearly nonlinear over
the larger F range in polydisperse foams (Fig. 2b). The
asymptote of (10) for large F is

G�F ¿ 1� �
p7�6

21�635�12 F1�2 2 61�32p2�3, (11)

i.e., a square-root behavior, which is depicted as a dot-
dashed line in Fig. 2. In the figure, it is indistinguishable
from the full analytical expression (10) for F * 15. The
conjectured linear 3D von Neumann law [11,12] does not
agree with the simulations. A square-root growth law for
large F is implicit in the model of Ref. [14], which, how-
ever, shows substantial discrepancies to simulations.

We now consider a more realistic model foam, drop-
ping the assumption of identical F-bubbles and allowing
for disorder by (i) introducing a distribution of regular
polygonal faces with different edge numbers h, and
(ii) letting the edge length vary with h �LF ! LF,h�.
A random foam must inevitably have a variety of edge
numbers, for which experiments [21] and simulations
[22] give a distribution function well approximated by a
Gaussian f�h� � exp�2�h 2 hF�2�2�s2

h	��2p�1�2�sh

with sh 
 0.59 [21] and 0.73 [22], respectively.
The h dependence of L allows the foam to reduce its

surface area. We attempt to minimize the surface area
AF of the F-faced bubbles separately for each F, while
keeping the volume V constant. Approximating AF and V
by their skeleton values, the minimization problem is

dAF � d
Z Fh

4 tan�p�h�
f�h�L2

F,h dh � 0

with

V �
Z Fh

12 tan�p�h�
f�h�h̃L3

F,h dh � const , (12)

where h̃ is given by

h̃ �
1

2 sin p

h

tan�p2v�2
h �

�tan2 p

h 2 tan2�p2v�2
h �	1�2

. (13)

The solid angle v subtended by an h-edged face
is approximated by the quotient of its area and the
total bubble area at fixed edge length, i.e., v �
�ph�F tan�p�h�	��

R
h0f�h0�����4 tan�p�h0���� dh0	. The

resultant optimum LF,h is calculated to be

LF,h �
2V 1�3

lh̃
,

with

l �

"Z 2Fhf�h�
3 tan�p�h�h̃2

dh

#1�3

. (14)

The angles x are altered by the h dependence as well to
xF,h � 2 arctan�1��2h̃ tan�p�h�	�.

In a final step, LF,h is modified again because the
foam bubbles are curved and some of the volume V re-
sides in the spherical caps. To leading order, this changes
edge lengths by 2D��2h̃�, where D � LF,h�1 2 ���1 2

�xF,h 2 p�3�2�4���1�2	��tan�p�h� �xF,h 2 p�3�	. These
edge lengths and angles, weighted by f�h� with sh �
0.73, yield the corrected growth function G�F�, displayed
as solid line in Fig. 2. The accuracy is improved to typi-
cally 2%–3%, and we obtain F0 
 13.85 (13.82 in the
monodisperse simulations) with an error smaller than the
statistical error in the simulations. The difference from
F0 � 14.00 for the polydisperse system is significant and
could stem from an effect of volume-face number correla-
tions (bubbles with large volume tend to have many faces
[23]). Larger deviations occur for the lowest F 
 5, where
interfaces are often strongly curved and the assumption
R ¿ LF,h fails. Allowing for distributions of L at fixed
F, h could further refine the model. However, simulations
suggest that these distributions are fairly narrow.
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FIG. 3. Theoretical dependence of the neutral growth face
number F0 on the width sh of the edge number distribution
f�h� (solid line). The inset shows F0�sh� on a linear scale,
and the main figure indicates, as a dashed line, the quadratic
power law for small F0 2 F�

0 .

Our values for F0 are smaller than those calculated with
a Potts model [12], indicating larger disorder in that model.
In foams, the time scale for the change of surface area via
shape rearrangement is much smaller than that for area
change by diffusive loss or gain of gas. This time scale
separation is not present in the Potts model, i.e., the foam
cannot relax to minimal surface area in every time step,
which would anneal some of the disorder.

Matzke [21] did not consider gas diffusion or record
F0 for his experimental foams, but gave the average face
number F̄ 
 13.70. As his structures were monodisperse,
we expect F̄ � F0 [23]. Setting sh to Matzke’s value
(0.59) in our model gives F0 
 13.70, in agreement with
experiment. Figure 3 shows the computed variation of F0
with sh . As sh ! 0, F�

0 is approached quadratically.
The simulations as well as the formalism presented

here find that in a monodisperse foam the average area
of F-bubbles increases with F, so that a minimal-area
monodisperse foam is prone to have F0 � F̄ as small as
possible. As F0 grows with sh , the “optimal” foam must
have a small sh . The inevitable presence of 4-, 5-, and
6-sided faces in a random foam, however, sets a lower limit
to sh . Simple estimates [24] suggest F̄ * 13.6 for uni-
modal F distributions. Only regular foams such as the
Weaire-Phelan foam, currently the tessellation of space
with the smallest surface area known [25], seem to ap-
proach F̄ as low as 13.5 [5].

The model presented here has yielded accurate growth
rates throughout the range of bubble face numbers in real-
istic foams. Combined with number and volume distribu-
tions of F-bubbles in aged, statistically self-similar foams
[8], macroscopic coarsening rates can be computed. The
growth of F̄ with sh in monodisperse foams may give
valuable clues in the attempt to solve Kelvin’s problem of
the optimal partition of space into equal volumes, whose
solution has so far eluded researchers.
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