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Nonadditivity of Bipartite Distillable Entanglement Follows from a Conjecture
on Bound Entangled Werner States
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Assuming the validity of a conjecture given by DiVincenzo et al. [Phys. Rev. A 61, 062312 (2000)]
and by Dür et al. [Phys. Rev. A 61, 062313 (2000)], we show that the distillable entanglement for two
bipartite states, each of which individually has zero distillable entanglement, can be nonzero. We show
that this also implies that the distillable entanglement is not a convex function. Our example consists of
the tensor product of a bound entangled state based on an unextendible product basis with an entangled
Werner state which lies in the class of conjectured undistillable states.
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One of the central goals of the theory of bipartite
quantum entanglement is to develop measures of quantum
entanglement. For pure states, this problem is largely
solved. One can formulate a set of basic requirements [1]
which give rise to a unique measure [2,3] which is the
von Neumann entropy S�r� � 2Trr logr of the reduced
density matrix r � TrAjc� �cj of the pure state jc�. For
mixed states, all measures that obey the desirable require-
ments have been shown to lie between the regularized
entanglement of formation E`�r� � limn!` Ef �r≠n��n,
where Ef �r� is the entanglement of formation of r [4],
and the distillable entanglement D�r� (see Refs. [4,5]
for proper definitions of D). The special role of E` and
D among the possible entanglement measures for mixed
states is emphasized by the fact that they have a direct
physical interpretation; they measure the entanglement
costs of making the state r asymptotically from pure
states [4,6] and the amount of pure entanglement that can
be extracted from r asymptotically, respectively. Even
though these measures are of central importance in the
theory of bipartite entanglement, various open questions
exist about their basic properties.

There exists one class of bipartite density matrices
for which it is known that even though a state r in this
class is entangled, the distillable entanglement D�r� � 0.
This class of states is characterized by the fact that the
states do not violate the Peres-Horodecki criterion, i.e.,
�1 ≠ T � �r� $ 0, where T is matrix transposition in a
chosen basis. It was shown in Ref. [7] that this implies
that D�r� � 0. Let us call these states PPT (“positive
partial transpose”) bound entangled states. Researchers
have considered whether this kind of bound entangled
state can play a role in quantum information processing;
for example, it can be proved that PPT bound entangled
states are a useless resource in protocols of quantum
teleportation [8] and also superdense coding [9]. On the
other hand, it has been found that bound entanglement can
be used to quasidistill a single free entangled state [10],
something which is not feasible without this additional
resource. In this Letter we present an even stronger
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effect that bound entangled states can have; states which
are conjectured to be undistillable become distillable by
adding PPT bound entanglement. Let us refer to these
conjectured bound entangled states as NPT (“negative
partial transpose”) bound entangled states. This family of
states was considered in Refs. [11] and [12]. The states
do violate the Peres-Horodecki criterion; however, they
seem to lose this property when trying to squeeze the
entanglement (distill) into a smaller set of states. Let
us state the conjecture which was made in Refs. [11]
and [12]:
Conjecture 1 [11,12].—Given is the class of Werner
states [13] in H3 ≠ H3:

rW �l� �
1

8l 2 1

µ
l1 2

l 1 1
3

H

∂
. (1)

Here H is the swap operator, i.e., Hji, j� � j j, i� for all
states ji, j� where i, j � 1, . . . , 3. The state liml!` rW �l�
is separable and for any finite l $ 0 rW �l� is entangled
and violates the Peres-Horodecki criterion. It is conjec-
tured that for all l $ 2 the state rW �l� is undistillable,
i.e., D�rW �l�� � 0.

Before reviewing the evidence for this conjecture, let us
recall the condition for distillability:
Theorem 1 [7,11,12].—The density matrix r is distill-
able, i.e., D�r� . 0, if and only if there exists an n . 0
such that

Tr�jc2� �c2j �1 ≠ T � �r≠n�� , 0 , (2)

where jc2� [ HA ≠ HB is a state with Schmidt rank 2
and T is matrix transposition in any basis.

The evidence in support of the conjecture is the follow-
ing. If we set n � 1 in Theorem 1, one can prove that
Eq. (2) is non-negative for all states rW �l� with l $ 2.
Furthermore, for n � 2 and n � 3 numerical evidence
for the non-negativity for Eq. (2) has been found for these
states. Also it has been proved that for every finite n in
Theorem 1, there exists a finite l for which Eq. (2) is not
satisfied. The evidence, even though it is convincing, is
not conclusive.
© 2001 The American Physical Society 2681
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In this Letter we consider the distillability properties of
a pair of states, one of which has PPT bound entanglement
and one which has (conjectured) NPT bound entanglement.
Surprisingly we find that the distillable entanglement of the
pair can be nonzero. Thus

D�r1 ≠ r2� . 0, D�r1� � 0, D�r2�
conjectured

� 0 ,
(3)

which is an extreme example of nonadditivity of the distill-
able entanglement known as “superactivation” [14] assum-
ing that the conjecture holds. Examples of superactivation
of bound entanglement have previously been found in a
multipartite system [14]. The strict superaddivity that we
find here seems even more surprising since we expect that
fewer incomparable resources and states exist in the bipar-
tite case.

This nonadditivity has an added consequence, namely,
the entanglement measure D will not be convex if
Conjecture 1 holds. Let us take the states r1 and r2 for
which Eq. (3) holds and mix them in this way:

r �
1
2

r1 ≠ �j1� �1j�A 1
1
2

r2 ≠ �j2� �2j�A . (4)

Convexity of D would imply that

D�r� #
1
2

D�r1 ≠ �j1� �1j�A� 1
1
2

D�r2 ≠ �j2� �2j�A�
conjectured

� 0 . (5)

However, we can show that D�r� . 0. To distill the mix-
ture, Alice first measures the label j1� and j2� on many
copies of r. This will give Alice and Bob a supply of
both r1 as well as r2 which can be distilled since D�r1 ≠
r2� . 0. We must conclude that demanding convexity of
an entanglement measure, as was done in Ref. [1], is too
constraining [15].

Another consequence of the result is a nonzero lower
bound on the entanglement of formation of r2. From
Proposition 3 in Ref. [16] we have that the distillable en-
tanglement of r2, assisted by bound entanglement [e.g.,
state r1 for which D�r1� � 0] is a lower bound for the reg-
ularized entanglement of formation E`�r1�, or E`�r1� $

D�r1 ≠ r2� . 0. Note that if Conjecture 1 holds, the
same is true for state r1, i.e., D�r1� � 0, but E`�r1� $

D�r1 ≠ r2� . 0 which would provide an additional ex-
ample of irreversible asymptotic entanglement processing
[17].

The distillable state r � r1 ≠ r2 also provides the first
nontrivial example of a density matrix which satisfies the
reduction criterion [18], i.e., 1A ≠ rB 2 r $ 0 and rA ≠
1B 2 r $ 0, while it is distillable. This follows from
the fact that both r1 and r2 satisfy the reduction criterion
(otherwise they would be distillable) and the fact that any
tensor product of states that by itself satisfies the criterion
satisfies the reduction criterion as well [18].
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For our PPT bound entangled state we choose a bound
entangled state in H3 ≠ H3 based on an unextendible
product basis (UPB) [19]. In particular, in Ref. [19] the
Pyramid UPB was introduced and the corresponding
bound entangled state rPyr . The unextendible product
basis is given by five vectors

jyi ≠ y2i mod5�, i � 0, . . . , 4 , (6)

where

jyi� � N�cos�2pi�5�, sin�2pi�5�, h� , (7)

and N � 2�
p

5 1
p

5 and h � 1
2

p
1 1

p
5 . The bound

entangled state rPyr is equal to

rPyr �
1
4

µ
1 2

4X
i�0

jyi , y2i mod5� �yi , y2i mod5j

∂
. (8)

Our choice of the NPT bound entangled state is the Werner
state rW �l� in H3 ≠ H3. The partial transpose of this
state is

�1 ≠ T � �rW �l�� �
1

8l 2 1
�l1 2 �l 1 1� jC� �Cj� ,

(9)

where jC� � 1p
3

P
i jii�.

We show that there exists a vector jc2� which has
Schmidt rank 2 with the property

Tr�jc2� �c2j �1 ≠ T � �rW �l� ≠ rPyr�	 , 0 , (10)

for a certain range in l. From Theorem 1 it then fol-
lows that rW �l� ≠ rPyr is distillable. The vector jc2� [
HA1, B1 ≠ HA2, B2 can be parametrized as

jc2� �
X
i, j

ji, j� ≠ jcij� , (11)

where the vectors jcij� are of the form

jcij� � jxi� ≠ j yj� 1 jzi� ≠ juj� , (12)

due to the fact that jc2� has Schmidt rank 2 over a cut in
A1, A2 versus B1 and B2. Here the vectors jxi�, j yi�, jzi�,
jui� are unnormalized arbitrary vectors in H3, to be fixed
later. We will not be concerned with the normalization
of the vector jc2� since this is irrelevant for the sign in
Eq. (10).

It was noted in Ref. [19] that the density matrix rPyr is
invariant under partial transposition 1 ≠ T . Using this fact
and the parametrization of jc2� we can express Eq. (10)
[dropping the factor 1��8l 2 1�] in terms of the vectors
jcij�:

Tr�l
P

ijcii� �ciij 2
l11

3

P
i, jjcii� �cjjj�rPyr

1 l Tr
P

ifijjcij� �cijjrPyr . (13)
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We make a choice for the vectors jcij� which results in

jc2� � 2j0, 2� ≠ jy4, y3� 1
1
2 j2, 0� ≠ jy3, y1� 1 2j1, 2� ≠ jy1, y2� 1

1
2 j2, 1� ≠ jy2, y4� 1 j0, 0� ≠ jy4, y1� 2 j1, 1�

≠ jy1, y4� 1 j2, 2� ≠ �jy3, y3� 2 jy2, y2�� . (14)
It can easily be checked that this choice corresponds to
setting8>><

>>:

2jx1� � jz1� � 2j y0� � 2ju0� � jy1�
jx0� � jz0� � 2j y1� � 22ju1� � jy4�
2jx2� � ju2� � jy3� 1 jy2�
2jz2� � j y2� � jy3� 2 jy2� .

(15)

Now we observe the consequences for Eq. (13). Since
we have chosen the states jcij� for i fi j to be equal to
either the zero vector or one of the UPB vectors, Eq. (6),
we ensure that the last term in Eq. (13) is 0. We then
use that the inner products of the remaining vectors with
respect to the state rPyr are given by

�y1, y4jrPyrjy1, y4� �
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4
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(16)

Here jc22� � jy3, y3� 2 jy2, y2�. Hence it follows that
Eq. (13) equals

�c2j �1 ≠ T � �rW �l� ≠ rPyr� jc2�

�
1
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�l�17
p

5 2 37� 1 20 2 10
p

5 � . (17)
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FIG. 1. Numerical results on the value of Eq. (10) versus b.
At b � 1

6 the density matrix rW �l� is separable. When b . 1
5

rW �l� is distillable.
This expression is negative when

l ,
10
p

5 2 20

17
p

5 2 37

 2.3300 . (18)

Thus this solution provides a proof that in the range l [
�2, 2.3300� the state rPyr ≠ rW �l� is distillable.

The solution that we have constructed analytically may
not be optimal. We have carried out a numerical study, see
Fig. 1, evaluating the minimum value of Eq. (10) while
varying the parameter b which is related to l by l � �b 1

1�3���8b 2 4�3�, or b [ �1�6, 1�5� when l [ �`, 2�. As
the figure shows, the activation effect is extremely small
(all density matrices and states are normalized here, unlike
in the analytical procedure above) and seems to vanish
before we reach the boundary with the set of separable
Werner states (see also [20]). It is possible that by using
two or more states rPyr for the activation we obtain a
negative expectation value for smaller values of b.

The activation of rW �l� by rPyr is not an effect par-
ticular to rPyr . The strategy to minimize Eq. (13) can very
likely be generalized to other bound entangled states based
on unextendible product bases. We can always put the last
term to zero, by choosing the states jcij� to be either 0
vectors or UPB vectors. This gives us some additional
constraints for the states jcii�, but the number of free pa-
rameters will still be quite large.

In conclusion, pending the proof of Conjecture 1, we
have determined an essential new and surprising property
of the distillable entanglement, namely, its capacity to be
nonadditive. It is clear that it would be highly desirable to
prove the conjecture, but that goal remains elusive for the
moment.
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