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Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors
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Excitation spectrum of a half-quantum vortex in a p-wave superconductor contains a zero-energy
Majorana fermion. This results in a degeneracy of the ground state of the system of several vortices.
From the properties of the solutions to Bogoliubov–de Gennes equations in the vortex core we derive
the non-Abelian statistics of vortices identical to that for the Moore-Read (Pfaffian) quantum Hall state.
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Certain types of superconductors with triplet pairing al-
low half-quantum vortices [1,2]. Such vortices appear if
the multicomponent order parameter has extra degrees of
freedom besides the overall phase, and the vortex involves
both a rotation of the phase by p and a rotation of the
“direction” of the order parameter by p, so that the or-
der parameter maps to itself on going around the vortex.
The magnetic flux through such a vortex is one-half of the
superconducting flux quantum F0.

As far as low-lying subgap excitations are concerned,
a half-quantum vortex for spinful fermions is equivalent
to a single-quantum vortex in a p-wave superconductor of
spinless fermions. A remarkable feature of such a vortex is
a Majorana fermion level at zero energy inside the vortex
core [3]. This energy level has a topological nature [4]
and from continuity considerations must be stable to any
local perturbations. In terms of energy levels, the Majorana
fermions in vortex cores imply a 2n-fold degeneracy of
the ground state of a system with 2n isolated vortices.
If the vortices adiabatically move around each other, this
motion may result in a unitary transformation in the space
of ground states (non-Abelian statistics). We shall see that
it is indeed the case.

The non-Abelian statistics for half-quantum vortices has
been previously derived for the Pfaffian quantum Hall state
proposed by Moore and Read [5]. The Pfaffian state is
of Laughlin type corresponding to filling fractions with
even denominator. The excitations in the Pfaffian state are
half-quantum vortices, and their non-Abelian statistics has
been obtained in the field-theoretical framework [6–9].

Recently Read and Green suggested that the Pfaffian
state belongs to the same topological class as the BCS
pairing state and thus the latter must have the same non-
Abelian statistics [3]. In our paper we verify this directly
in the BCS framework as the property of solutions to
Bogoliubov–de Gennes equations. Our derivation pro-
vides an alternative (and possibly more transparent) point
of view on the non-Abelian statistics of half-quantum vor-
tices as well as an additional confirmation of topological
equivalence between Pfaffian and BCS states.

First, we point out the equivalence between a half-
quantum vortex for spinful fermions and a single-quantum
vortex for spinless (or spin-polarized) fermions. Consider
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first the spinless case. To respect the anticommutativity of
fermions, the superconducting order parameter in a spin-
less superconductor must have odd parity. We consider
a two-dimensional superconductor with a chiral order pa-
rameter D�k� � �kx 6 iky�D. The 6 sign denotes the two
possible chiralities of the condensate. In this paper we do
not discuss interaction of vortices with domain walls sepa-
rating regions of opposite chirality. Instead, we assume
that the chirality is fixed in the region where the vortex
braiding occurs (e.g., an external field can make one chi-
rality energetically favorable). The chirality breaks time-
reversal symmetry, and the positive and negative vortices
are not equivalent. The two types of vortices have slightly
different structure of the quasiparticle eigenfunctions, but
their low-energy spectra and the braiding statistics are the
same. Our discussion below is applicable to both positive
and negative vortices.

The Hamiltonian of the axially symmetric (positive) vor-
tex is

H �
Z

d2r
∑
Cy

µ
2

=2

2m
2 ´F

∂
C

1 Cy�eiuD�r� � �=x 1 i=y��Cy 1 H.c.

∏
,

(1)

where � is the symmetrized product [A � B � �AB 1

BA��2], r and u are the polar coordinates.
The same vortex Hamiltonian (1) describes the low-

energy excitations in the half-quantum vortex in a chiral
p-wave superconductor of spinful fermions (with the order
parameter of A phase of 3He). In the spinful case, the
order parameter is characterized not only by its phase w,
but also by the direction d̂ of triplet pairing. The wave
function of the condensate is

C � eiw�dx�j"" � 1 j## �� 1 idy�j"" � 2 j## ��
1 dz�j"# � 1 j#" ��� �kx 1 iky� . (2)

For a half-quantum vortex to exist, the vector d̂ must
be able to rotate (either in a plane or in all three dimen-
sions). The order parameter maps to itself under simultane-
ous change of sign of the vector d̂ and shift of the phase w
© 2001 The American Physical Society
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FIG. 1. Half-quantum vortex. Arrows denote the direction of
vector d̂.

by p: �w, d̂� � �w 1 p, 2d̂�. The half-quantum vortex
combines rotations of the vector d̂ by p and of the phase
w by p on going around the vortex core (Fig. 1). This
vortex is topologically stable, i.e., it cannot be removed
by a continuous (homotopic) deformation of the order
parameter.

Without loss of generality, let vector d̂ rotate in the x-y
plane. Then the condensate wave function (2) in the vortex
takes the form (in the polar coordinates r and u):

C�r , u� � D�r� �eiuj"" � 1 j## �� �kx 1 iky� . (3)

The spin-up and spin-down electrons decouple. The
spin-down sector has no vortex and consequently no low-
energy states. For our further discussion of adiabatic
vortex motion it may be neglected. The spin-up sector is
in turn described by the Hamiltonian (1).

The Hamiltonian (1) may be diagonalized by quasi-
particle operators gy � uCy 1 yC. The Bogoliubov–
de Gennes equations �H, gy� � Egy for u and y are
identical to those for a single-quantum vortex (with the
vector d̂ constant in space) and were solved by Kopnin and
Salomaa in the context of superfluid 3He vortices [10]. The
low-energy spectrum is En � nv0, where v0 � D2�´F

is the level spacing. The quantum number n takes integer
values (which distinguishes p-wave vortex states from
Caroli–de Gennes–Matricon states in s-wave vortices
[11]) and has the meaning of the angular momentum of
the quasiparticle.

The half-quantum vortex (1) differs from the conven-
tional single-quantum vortex in that the coefficients u and
y correspond not to fermions of opposite spin, but to the
creation and annihilation of the same fermion. As a conse-
quence, the solutions to Bogoliubov–de Gennes equations
in the half-quantum vortex obey the additional relation be-
tween positive- and negative-energy eigenstates gy�E� �
g�2E�. In other words, the solutions with positive and
negative energies are the creation and annihilation opera-
tors for the same fermionic level. Therefore the number
of degrees of freedom in a half-quantum vortex is one-
half of that in the conventional single-quantum vortex.
The zero-energy level becomes a self-conjugate (Majo-
rana) fermion:

gy�E � 0� � g�E � 0� . (4)

The self-conjugacy condition is specific for the half-
quantum vortex in a triplet superconductor and dis-
tinguishes it from other systems with topological
zero-energy levels such as solitons in polyacetylene [12].
In the half-quantum vortex, the spin degree of freedom is
excluded, and the creation and annihilation operators are
mixed by superconductivity, making the self-conjugacy
relation possible. Formulating general conditions for the
occurrence of a Majorana fermionic level in an arbitrary
quantum-mechanical system remains an interesting open
problem, as well as designing an experimental realization
of an isolated Majorana fermion.

It is worth mentioning that the Majorana fermion in the
half-quantum vortex (and the non-Abelian statistics de-
rived below) is stable with respect to any local perturbation
including external potential, electromagnetic vector poten-
tial, local deformations of the order parameter, spin-orbit
interaction, and Zeeman splitting (in a single-quantum vor-
tex, only the first three of those perturbations preserve the
zero-energy level [13]). We can easily prove it with con-
tinuity considerations. Indeed, suppose that we gradually
increase perturbation to the vortex Hamiltonian (which in-
cludes both the spin-up and spin-down sectors). The lev-
els will shift and mix, but they must do it continuously,
and therefore the number of levels is preserved. Since it
is half-integer without perturbation, it must remain half-
integer for the perturbed Hamiltonian, i.e., the Majorana
fermion survives the perturbation. This argument is valid
as long as the perturbation is sufficiently small so that the
low-lying states remain localized in the vortex.

Before we turn to discussing the non-Abelian statistics
of vortices, let us see how the Majorana fermion g�E � 0�
transforms under U�1� gauge transformations. If the over-
all phase of the superconducting gap shifts by f, it is
equivalent to rotating electronic creation and annihilation
operators by f�2: Ca � eif�2Ca , Cy

a � e2if�2Cy
a .

The solution �u, y� transforms accordingly: �u, y� �
�ueif�2, ye2if�2�. The important consequence of this
transformation rule is that under change of the phase of the
order parameter by 2p the Majorana fermion in the vortex
changes sign: g � 2g. This is an obvious consequence
of the fact that the quasiparticle is a linear combination
of fermionic creation and annihilation operators carrying
charge 61.

Now consider a system of 2n vortices, far from each
other (at distances much larger than j0 � yF�D). To each
vortex there corresponds one Majorana fermion (further we
shall denote them by gi , i � 1, . . . , 2n) commuting with
the Hamiltonian. They can be combined into n complex
fermionic operators and therefore give rise to the degener-
acy of the ground state equal to 2n (each fermionic level
269
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may be either filled or empty). If the vortices move adia-
batically slowly so that we can neglect transitions between
subgap levels, the only possible effect of such vortex mo-
tion is a unitary evolution in the space of ground states.

Let us fix the initial positions of vortices. Consider now
a permutation (braiding) of vortices which returns vortices
to their original positions (possibly in a different order).
Such braid operations form a braid group B2n (multiplica-
tion in this group corresponds to the sequential application
of the two braid operations) [14]. This group is generated
by elementary interchanges Ti of neighboring particles
(i � 1, . . . , 2n 2 1) modulo the relations (see Fig. 2):

TiTj � TjTi , ji 2 jj . 1 ,

TiTjTi � TjTiTj , ji 2 jj � 1 .
(5)

The braiding statistics is defined by the unitary opera-
tors in the space of ground states representing the braid
operations from B2n. Here an important reservation has
to be made. When a vortex moves along a closed loop,
the multiparticle state acquires a phase proportional to the
area inside the loop (every electron inside the loop ef-
fectively moves around the vortex). We shall disregard
this effect and, as a consequence, lose information about
the overall phase of the wave function. In other words,
we shall speak about only a projective representation of
the braid group B2n. However, since the representation
is multidimensional, the resulting projective representa-
tion is still nontrivial and transforms different states into
each other —which implies the non-Abelian statistics of
vortices.

Since the Majorana fermions gi change sign under a
shift of the superconducting phase by 2p, we introduce
cuts connecting vortices to the left boundary of the system
(Fig. 3). We take the superconducting phase single valued
away from the cuts and jumping by 2p across the cuts.
From examining Fig. 3 one easily obtains that the trans-
formation exchanging the two vortices i and i 1 1 (with
no vortices between them) changes the phase of the order
parameter at one of the vortices by 2p, which results in
the following transformation rule:

T

1

1

i+

i+

Ti

T

T

1i+T

iT

i

FIG. 2. Defining relation for the braid group: TiTi11Ti �
Ti11TiTi11.
270
Ti :

8<
:

gi � gi11 ,
gi11 � 2gi ,
gj � gj for j fi i and j fi i 1 1 .

(6)

This defines the action of Ti on Majorana fermions. One
easily checks that this action obeys the commutation rela-
tions (5).

Now the action of operators Ti may be extended
from operators to the Hilbert space. Since the whole
Hilbert space can be constructed from the vacuum state
by fermionic creation operators, and the mapping of the
vacuum state by Ti may be determined uniquely up to a
phase factor, the action (6) of B2n on operators uniquely
defines a projective representation of B2n in the space of
ground states.

The explicit formulas for this representation may be
written in terms of fermionic operators. Namely, we need
to construct operators t�Ti� obeying t�Ti�gj�t�Ti��21 �
Ti�gj�, where Ti�gj� is defined by (6). If we normalize the
Majorana fermions by �gi , gj	 � 2dij, then the expression
for t�Ti� is

t�Ti� � exp

µ
p

4
gi11gi

∂
�

1
p

2
�1 1 gi11gi� (7)

(up to a phase factor).
This formula presents the main result of our calcula-

tion. On inspection, this representation coincides with that
described by Nayak and Wilczek for the statistics of the
Pfaffian state [6] (our Majorana fermions correspond to
the operators gi in section 9 of their paper).

The two simplest examples of the representation (7) are
the cases of two and four vortices. These examples were
previously discussed to some extent in the Pfaffian frame-
work in Refs. [6,7], and we review them here for illustra-
tion purposes.

In the case of two vortices, the two Majorana fermions
may be combined into a single complex fermion as C �
�g1 1 ig2��2, Cy � �g1 2 ig2��2. The ground state is
doubly degenerate, and the only generator of the braid
group T is represented by

t�T � � exp

µ
p

4
g2g1

∂
� exp

∑
i

p

4
�2CyC 2 1�

∏

� exp

µ
i

p

4
sz

∂
, (8)

where sz is a Pauli matrix in the basis (j0 �, Cyj0 �).
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FIG. 3. Elementary braid interchange of two vortices.
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In the case of four vortices, the four Majorana fermions combine into two complex fermions C1 and C2 by C1 �
�g1 1 ig2��2, C2 � �g3 1 ig4��2 (and similarly for C

y
1 and C

y
2 ). The ground state has degeneracy four, and the three

generators T1, T2, and T3 of the braid group are represented by

t�T1� � exp

µ
i

p

4
s�1�

z

∂
�

0
BBB@

e2ip�4

eip�4

e2ip�4

eip�4

1
CCCA ,

t�T3� � exp

µ
i

p

4
s�2�

z

∂
�

0
BBB@

e2ip�4

e2ip�4

eip�4

eip�4

1
CCCA , (9)

t�T2� � exp

µ
p

4
g3g2

∂
�

1
p

2
�1 1 g3g2� �

1
p

2
�1 1 i�Cy

2 1 C2� �Cy
1 2 C1�� �

1
p

2

0
BBB@

1 0 0 2i
0 1 2i 0
0 2i 1 0

2i 0 0 1

1
CCCA ,
where the matrices are written in the basis (j0 �, C
y
1 j0 �,

C
y
2 j0 �, C

y
1 C

y
2 j0 �).

There are two important properties of the representation
(7) [6,7]. The first one is that t�T � are even in fermionic
operators and therefore preserve the parity of the number of
fermions (physically, this simply means that the supercon-
ducting Hamiltonian creates and destroys electrons only
in pairs). Therefore the representation may be restricted
to odd or even sector of the space of ground states, each
of them containing 2n21 states (this degeneracy was also
found for the Pfaffian state in Refs. [6–8]). Still, in each
of these subspaces the representation operators are nontriv-
ial and noncommuting.

The second property of the representation (7) is that T4
i

is represented by a scalar matrix (projectively equivalent
to the unity matrix, since we disregard the overall phase).
That is, an elementary interchange of two vortices repeated
four times produces an identity operator (up to an overall
phase).

Quite remarkably, our derivation of the non-Abelian sta-
tistics relies only on the two facts: first, the flux quantiza-
tion (half quantum for spin-1�2 electrons or, equivalently,
single quantum for spinless fermions) and, second, that
the Majorana fermions carry odd charge with respect to
the vortex gauge field, i.e., they transform as gi � 2gi

when the phase of the order parameter changes by 2p. But
these are quantization properties that depend only on the
presence of the Majorana fermion in the vortex spectrum,
but not on the exact form of the Hamiltonian. Therefore,
if we introduce disorder or other local perturbation in the
BCS Hamiltonian (such as electromagnetic vector poten-
tial, spin-orbit scattering, or local deformation of the order
parameter), then not only the Majorana fermions survive,
but also the braiding statistics (7) remains unchanged (pro-
vided the Majorana fermions stay localized in vortices).
Thus we may speak of the topological stability of the
non-Abelian statistics (7).
Finally, we mention that the operators t�Ti� have also
been discussed in the context of quantum computation as
part of a universal set of operators [15]. Also, non-Abelian
anyons provide a topologically stable realization of uni-
tary operators for quantum computing [16]. Thus, should
p-wave superconductors with sufficiently large Tc (or,
equivalently, large v0) be discovered, they may provide
a promising hardware solution for quantum computation.
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