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Resonant Tunneling into a Biased Fractional Quantum Hall Edge
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We observe resonant tunneling into a voltage biased fractional quantum Hall effect (FQHE) edge, using
atomically sharp tunnel barriers unique to cleaved-edge overgrown devices. The resonances demonstrate
different tunnel couplings to the metallic lead and the FQHE edge. Weak coupling to the FQHE edge
produces clear non-Fermi liquid behavior with a sixfold increase in resonance area under bias arising
from the power law density of states at the FQHE edge. A simple device model uses the resonant
tunneling formalism for chiral Luttinger liquids to successfully describe the data.
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Studies of resonant tunneling at the fractional quantum
Hall effect (FQHE) edge have long sought to demonstrate
clear non-Fermi-liquid behavior. The correlated FQHE
state [1] is predicted to host an interacting one-dimensional
electronic system at its edge called a chiral Luttinger liq-
uid [2], yet conclusive evidence for Luttinger liquid behav-
ior in resonant tunneling measurements has proved elusive
[3–5]. A simple measurement of the resonance line shape
can theoretically resolve the character of the leads [6–9],
but in practice the subtle difference between a Fermi-liquid
(FL) and Luttinger-liquid (LL) line shape is beyond ex-
perimental resolution [4]. One must therefore introduce an
external energy scale, e.g., temperature, to probe the char-
acter of the resonance. Temperature dependent studies of
gate tuned resonances in a disordered FQHE point contact
[4] showed linewidths consistent with the expected T2�3

scaling, but only over a factor of 3 in temperature—not
convincingly different from the linear fit that a conven-
tional FL resonance would produce. In this Letter we
demonstrate another energy scale besides temperature that
can reveal non-FL behavior, namely an external voltage
bias.

New questions about the very nature of the FQHE edge
have been posed by recent (nonresonant) tunneling experi-
ments by the authors [10–12]. When tunneling into a
sharp FQHE edge the power law current-versus-voltage
characteristic anticipated for the chiral LL was seen for a
whole continuum of filling factors. Depending on sample
quality, the power law exponent, a, would vary linearly
with the reciprocal of the filling factor, 1�n [11], or ex-
hibit a plateau structure near a � 3 [12]. While these re-
sults provided strong evidence for a chiral LL at n � 1�3,
away from n � 1�3 they deviated from the theoretically
expected behavior [13] stimulating a host of recent theo-
retical work [14]. The discovery and characterization of
the resonance in this Letter promise a new criterion for
understanding the physics of the sharp FQHE edge.

This new tunneling resonance occurs in the same type
of cleaved-edge overgrown [15] tunnel junction previously
0031-9007�01�86(12)�2645(4)$15.00
studied by the authors [10–12,16] between a bulk doped
metal and a FQHE edge (device inset, Fig. 1). The reso-
nance itself most likely arises from an unintentionally in-
troduced impurity state in the barrier. Because of the sharp
and energetically tall (100 meV) barrier, we can for the
first time characterize the response of the resonance under
dc bias, whereas with gate defined tunnel structures a mod-
erate dc bias distorts the soft tunneling barrier. The quan-
tum wells of samples R and M had two-dimensional (2D)
carrier densities of ne � 1.08 and 0.89 3 1011 cm22, and
mobilities of m � 2.9 and 1.8 3 106 cm2�V s, respec-
tively. These were simultaneously cleaved and edge grown
with a 90 Å AlxGa12xAs barrier (x � 0.1) , followed
by 150 Å undoped GaAs and 0.5 mm bulk doped GaAs,
n1 � 2 3 1017 cm23.

To measure conductance, G, we applied an 8 mV ac
rms square wave and measured the resulting current with
a lock-in amplifier while sweeping the magnetic field, B
(Fig. 1). The ac voltage was chosen to match our thermally
limited resolution at base temperature, 25 mK (Vac �
2pkBT ) [6]. Since the exact density profile at the edge
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FIG. 1. Samples M, R.1, and R.2. Inset right: R.1 with deriva-
tive Fermi function. Inset left: Device.
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is uncertain [17] we explicitly refer to all filling factors
as nbulk. For sample R, we label the first and second
cooldowns as R.1 and R.2, and append an additional suffix
for multiple resonances (R.2.A, R.2.B, etc.).

Sample M in Fig. 1 showed a resonance at nbulk �
0.294, and R.1 showed the strongest resonance at
nbulk � 0.338. For the second cooldown R.2, we see
four resonances at nbulk � 0.346, 0.333, 0.307, and 0.303
from left to right, respectively. Other samples measured
showed no detectable resonances. For the resonance R.1
we also measured temperature dependence (Fig. 2). With
increasing T the resonance linewidth broadens and the
peak height decreases relative to a rising background
conductance (Fig. 2, inset).

To measure bias dependence, a fixed dc bias from 240
to 140 mV was added to the ac signal and differential
conductance, dI�dV , was measured as a function of B
(Fig. 3). With bias the background conductance increases
due to the power law density of states, shifting the curves
upwards. For our sign convention we electrically ground
the 2D and apply the signed voltage to the n1 electrode.
Starting with R.1 (Fig. 3, right), the peak splits under bias
into a tall and a short peak with the tall peak shifting far-
thest from center and the total separation in B proportional
to the applied voltage. The total area subtended by the two
peaks relative to the background increases only slightly un-
der bias. Measuring the bias dependence of another reso-
nance R.2.A (Fig. 3, left), instead of splitting this peak
broadens into a lopsided single peak that leans to the right
for positive bias and to the left for negative bias. Most
notably, the area subtended by the resonance relative to
the background conductance increases by a factor of 6 un-
der 30 mV bias, an altogether different qualitative behavior
from R.1.

To begin our analysis, we relate the magnetic field
to an energy scale using two different methods. First
note (Fig. 1, inset) that the line shape for R.1 can be
scaled to fit the derivative of a Fermi function, 2f 0�E� �
1

4kBT sech2� E
2kBT �, the line shape expected for a resonance

B (T)
13.1 13.2 13.3 13.4

G
 (

n
S

)

0

100

200 R.1

T (K)
10-1 100

10

100

72 mK

58 mK48 mK

35 mK27 mK

T

T2

1/T

FWHM linewidth
         (mT)

Peak height
      (nS)

Background
       (nS)

FIG. 2. Temperature dependent conductance of R.1. Inset: be-
havior of peak structure.
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fed by a Fermi liquid lead. Dividing the calculated thermal
linewidth, DE � 4kBT arccosh�

p
2 � by the linewidth of

the observed resonance DB, we deduce from thermal
measurements a scaling coefficient bT :

jbT j �

Ç
dE
dB

Ç
�

DE
DB

� 0.42 meV�T. (1)

Alternatively, since the B-field separation between peaks
in Fig. 3 is linear with applied bias, we can empirically
assign from voltage bias measurements a coefficient, bV :

jbV j �

Ç
dE
dB

Ç
�

eVbias
Bpeak2 2 Bpeak1

� 0.43 meV�T. (2)

The clear agreement of these coefficients suggests that the
energy of the resonant state, Er , is being swept through the
chemical potential in proportion to the magnetic field by
a single coefficient b �

dEr

dB , with the resonant state pro-
ducing a conductance peak whenever it passes the chemical
potential in either lead.

Turning to the temperature dependent measurements of
R.1 (Fig. 2, inset), the resonance broadens roughly linearly
in T , and the peak height drops relative to the background
as 1�T consistent with thermal broadening of a FL reso-
nance. The background conductance, however, behaves
as a power law in temperature with the same LL-like ex-
ponent reported previously [10–12], implying we have a
FL-like resonance on top of a LL-like background.

The key to understanding this behavior lies in the rela-
tive coupling strength of the resonance to the two leads.
We define GFL as the tunnel coupling strength from the
resonant state to the n1 lead, and GQH as the coupling to
the quantum Hall lead. Overall the resonance is weakly
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coupled since the strongest peak is a factor of 100 smaller
than the perfect resonant conductance, e2�2h; but as
pointed out by Kane [18], when the relative coupling to
the two leads is different, the tunnel conductance will
be determined principally by the most weakly coupled
lead. To develop our intuition, we will discuss the limit
case where the stronger coupled lead combines with the
resonance to act as a delta function at the resonance
energy Er . Under bias V to the strongly coupled lead, a
current Ir then results from the weak coupling G to the
density of states in the remaining lead dn

dE [with Fermi
distribution f�E� �

1
eE�kT 11 ]:

Ir�Er � � G
e
h

dn
dE

�Er �

3 ��1 2 f�Er ��f�Er 2 eV �
2 f�Er� �1 2 f�Er 2 eV ��� . (3)

The real space position of the resonance in the tunnel
junction causes the resonance energy, Er , to depend on
bias. Assuming the resonance is bound to the local band
structure with energy bB0, we define the lever arm pa-
rameter l as the fraction of the applied bias that falls to
the weakly coupled side of the resonance. Combining this
with the previously noted B dependence gives the follow-
ing function for the resonance energy:

Er �V ,B� � leV 1 b�B 2 B0� . (4)

Substituting this into Eq. (3) and differentiating with re-
spect to voltage gives us the differential conductance

dIr

dV
�Er � � G

e2

h

∑
l

d2n
dE2 �Er � �· · ·� 2 l

dn
dE

�Er �f 0�Er �

2 �1 2 l�
dn
dE

�Er �f 0�Er 2 eV �
∏
,

(5)
where the expression in braces �· · ·� is that from Eq. (3).
Since Er is linear with B from Eq. (4), we can compare
dIr

dV �Er � from Eq. (5) with the data, dIr

dV �B� from Fig. 3.
In what we call the Fermi-liquid coupled (FLC) limit,

GFL ø GQH, the resonance is more weakly coupled to the
n1 lead so the FL density of states enters into Eq. (5).
We neglect the first term in Eq. (5) relative to the others
since for a FL at low T, d2n

dE2 ø
dn
dE f 0�E�. Approximat-

ing dn
dE � n0, the conductance peaks occur when the ar-

gument of f 0 is zero. The second term produces a peak
weighted by l when the resonance is aligned with the
n1 chemical potential, B � 2

le
b V 1 B0, and the third

term produces a peak weighted by �1 2 l� when the reso-
nance is aligned with the chemical potential of the FQHE
edge, B � 1

�12l�e
b V 1 B0. Looking at Fig. 3, the lever

arm model clearly accounts for the zero bias line shape of
2f 0�Er � and for the existence under bias of two peaks of
differing height shifted in B proportional to their heights.

In the contrasting quantum Hall coupled (QHC) limit
GQH ø GFL, the resonance is more weakly coupled to
the FQHE edge and the power law density of states en-
ters into Eq. (5). Here the resonance peak from the second
term in Eq. (5) is completely suppressed because the den-
sity of states dn

dE �Er �jEr �0 � Ea21
r � 0, vanishes when

the resonance is aligned with the FQHE chemical poten-
tial. We therefore expect only a single peak from the
third term when Er is aligned with the n1 chemical poten-
tial. The first term now contributes a nonnegligible con-
ductance proportional to the derivative of the density of
states d2n

dE2 between the two resonance centers. For a � 3
at a 1�3 FQHE edge, this additional conductance goes as
dI
dV � Ea22

r � Er , rising linearly with B as it approaches
the single resonance peak (Fig. 3, left).

Beyond differences in line shape, the most striking
qualitative difference between the QHC and FLC limits
is the (non)conservation of resonance area under bias. In
the FLC limit, the total integral of the resonance area is
constant,

R dI
dV �Er � dEr � G

e2

h n0, independent of bias. In
the contrary QHC limit the power law density of states
dn
dE � Ea21 leads to a simple power law dependence of
the resonance area on voltage bias (at zero temperature):R dI

dV �Er � dEr � Va21. At finite temperature, Fig. 3,
left, shows that this strong bias dependence remains,
with a factor of �6 increase in resonance area at 30 mV.
Together, the asymmetric line shape and nonconservation
of resonance area under bias convincingly demonstrate
the presence of a non-Fermi liquid resonance.

To simulate finite GFL and GQH, we adapt the resonance
formalism of de C. Chamon and Wen [7] for sequential tun-
neling between biased chiral LL’s, keeping the Luttinger
parameter of one channel g � 1�3 and changing the pa-
rameter of the other channel to g � 1 to represent a FL.
We then reapply our lever arm model, using a new de-
vice lever arm parameter l0 as that fraction of voltage bias
on the n1 side of the resonance. Up to a scaling factor
for the G’s, our model has a unique solution for a given
sign of b since the three independent quantities b, l0, and
GQH�GFL are parametrically determined by fitting three
structural features: the left and right peak positions, and
the ratio of peak heights. The background conductance has
no fit parameters since it obeys the well-known power law
with voltage, and exponential decay with B [10,11].

The simulated resonance curves are plotted against the
data in Fig. 3 with the four fit parameters listed in Table I.
The factor of area increase under bias Vbias is also listed
for both experiment (Sexp) and fit (Sfit). Using the cou-
pling constants and area conservation as an indicator of
the coupling limit, we see that resonances R.1 and R.2.B
are near the FLC limit with GFL , GQH, and a modest
50% and 70% increase in area with bias, respectively.
The temperature dependence of R.1 is also consistent with
calculations, with the experimental 30% increase in area
from T � 27 mK to 73 mK consistent with the modeled
45% increase. By contrast, R.2.A approaches the QHC
limit with GQH � GFL and the previously noted factor of
6 increase in area with bias. The sign of b is uniquely
2647
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TABLE I. Summary of resonance parameters.

R.1 R.2.A R.2.B
(FLC) (QHC) (FLC)

Lever arm parameters

l0 0.20 0.30 0.20
b 10.43meVT 20.26meVT 10.59meVT

GFL 1.3 1.0 1.0
GQH 19.7 3.5 14.0

Area increase under bias

Sexp 1.5 6 0.1 6 6 1 1.7 6 0.1
Sfit 1.54 5.9 1.58
Vbias 39 meV 30 meV 30 meV

determined for R.2.A because of the lopsided single peak
structure, and for R.1 and R.2.B, only the positive b solu-
tion can account for the observed increase in area.

We can explain the values of b as well as the observed
sign change by carefully considering how the 2D ground
energy affects the lever arm model. In the compress-
ible state increasing B increases the 2D ground energy,
E0�B� � 1

2 h̄
eB
m� , thereby lowering the 2D conduction band

and leveraging the resonance energy down by the lever
arm factor, l0: bcomp �

dEr

dB � 2l0 1
2

h̄e
m� . The resulting

bcomp � 20.26 meV�T exactly matches the fit parame-
ter for R.2.A suggesting that this resonance couples to a
compressible edge. On the other hand in the incompress-
ible state, the ground energy drops by the mobility gap
D over the width of the plateau B̄, changing the sign of
b and setting a lower bound bincomp $ 1D�B̄. Using
measured values of D � 450 meV and B̄ � 2 T, we get
bincomp $ 0.22 meV�T, consistent with the values for R.1
and R.2.B, and suggesting that these resonances couple
to incompressible edges. With the negative b (R.2.A)
and positive b (R.2.B) resonances having the same GFL,
it is even possible these neighboring resonances arise from
the same resonant state which is first lowered and then
raised through the chemical potential by leveraged 2D
ground energy oscillations. The differences in l0 and GQH
between resonances are then explainable from differences
in the screening length and tunneling character of com-
pressible and incompressible edges. If the resonance pair
R.2.A/R.2.B results from the nedge � 1�3 transition and
R.2.C/R.2.D from nedge � 2�5, this is consistent with an
edge density enhancement nedge � 1.2nbulk [17].

In conclusion, we have observed and characterized the
voltage dependence of a new type of resonance at a sharp
FQHE edge, demonstrating clear non-FL behavior through
line shape analysis and nonconservation of resonance area.
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