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Strong Linear-k Valence-Band Mixing at Semiconductor Heterojunctions
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This paper examines linear-k terms in the G8 valence-band Hamiltonian for heterostructures of zinc-
blende-type semiconductors. In bulk crystals such terms are known to be extremely small, due to
their origin as relativistic perturbations from d and f orbitals. However, in heterostructures there is a
nonvanishing contribution from p orbitals. This contribution is an order of magnitude larger than the
corresponding bulk term, and it should give rise to an optical anisotropy comparable to (although smaller
than) that seen in recent experiments on the quantum-well Pockels effect.
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The discovery of the quantum-well Pockels effect by
Kwok et al. [1] has attracted considerable interest in the
semiconductor physics community over the past several
years [2–8]. This effect involves a dramatic increase in
optical anisotropy caused by the reduction in crystal sym-
metry (from Td to C2y) at a heterojunction between two
zinc-blende-type semiconductors. It is now widely ac-
cepted that in type-I systems, the quantum-well Pockels
effect is primarily a consequence of the mixing of light and
heavy holes that arises from the rapid change in crystalline
potential at an abrupt junction. Such microscopic interface
effects can be described simply by adding a d-function
potential to the standard valence-band envelope-function
Hamiltonian [3,5,9–12].

It is, of course, well known that linear-k mixing of
the G8 valence states [13–17] must also contribute to the
Pockels effect. However, apart from a few early studies
[2,18] (which appeared before the significance of interface-
induced mixing was known), linear-k mixing has been
neglected in all theoretical models of the quantum-well
Pockels effect. This is because there is universal agreement
that such mixing is far too weak to account for the observed
optical anisotropy in quantum wells. Indeed, the neglect
of linear-k mixing is so common that it has become an
automatic first step in almost all valence-band calculations.

In this paper it is shown that, although the bulk mixing
is indeed very small [19], linear-k valence-band mixing is
greatly enhanced in the vicinity of a heterojunction. The
G8 linear-k mixing at an interface is an order of magni-
tude larger than in the bulk, and it should yield an optical
anisotropy comparable to (but smaller than) that observed
experimentally. (This conclusion is based on a compari-
son of the present Hamiltonian with similar Hamiltonians
used in earlier studies; no optical spectra are calculated
here.) Therefore, this source of mixing should be included
in theoretical models of the quantum-well Pockels effect.
It may or may not be significant in other situations, but
the neglect of such mixing should no longer be considered
automatic.

The reason why interface linear-k mixing is so much
larger than bulk mixing can be understood from simple
symmetry arguments. Linear-k terms in the G8 Hamil-
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tonian arise to lowest order as second-order perturbations
involving one matrix element of the spin-orbit interaction
and one matrix element of the k ? p interaction [14,15].
In the bulk, this coupling occurs via states of symmetry
G3 and G5 (in the notation of Ref. [13]), which are de-
rived primarily from atomic d and f orbitals, respectively.
As discussed by Cardona et al. [16,17], f orbitals are not
available in the core states of common semiconductors,
and the excited G5 states are very high in energy. There-
fore, the main contribution to G8 bulk mixing is from the
uppermost d states in the atomic cores.

However, as shown below, coupling to the p-like G4
states is not forbidden by symmetry; it just so happens that
the contributions from this coupling to the G8 Hamiltonian
have equal magnitude and opposite sign, so they cancel
out in the bulk. But in a heterostructure, these terms have
different operator ordering with respect to the crystal-
momentum operator k � 2i=, so the contribution from
G4 states does not vanish. The data given in Refs. [16] and
[17] show that the momentum matrix elements coupling
the G4 valence states to other G4 states are typically a factor
of 4 larger than those involving d core states, while the
corresponding energy gaps are a factor of 4 smaller. Thus,
one can easily see how the G4 contribution would tend to
dominate that from G3.

The same point was raised in another context by Kane
[14, pp. 95–96], who noted that the smallness of the G8
linear-k Hamiltonian is an abnormal situation caused by
the lack of any contribution from p-like states. At lower
symmetry points such as X and L, the p-like states do
contribute, and the spin-orbit-induced linear-k terms are
much larger. The present work shows that the reduced
symmetry at a heterojunction has the same basic effect.

The linear-k Hamiltonian for G8 and G7 valence
electrons in heterostructures is derived here using Burt’s
exact envelope-function formalism [20]. In this theory, the
microscopic Schrödinger equation for the heterostructure
is treated exactly using the Luttinger-Kohn representation
[21], and a set of approximate effective-mass equations
is derived systematically by discarding contributions that
(under suitable conditions) can be proven to be negligible.
This yields a well-justified envelope-function Hamiltonian
© 2001 The American Physical Society 2641
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with a clearly defined ordering of operators. The same
approach was used earlier to treat k2 terms in the
valence-band Hamiltonian [22], and the results show good
agreement with tight-binding calculations [23].

The only difference between the present work and Burt’s
derivation [20] is the inclusion of an extra perturbation —
namely, the spin-orbit Hamiltonian Hso � s ? S, in which
s is the Pauli spin matrix vector and [14]

S �
h̄

4m2c2 �=V 3 p� , (1)

where V is the potential energy of the electron and p is
its momentum. As in the bulk case [14,15], Hso is treated
using second-order perturbation theory, with the terms of
interest being first order in both Hso and k ? p. The details
of the derivation are precisely the same as in Burt’s paper
[20], so they will not be repeated here; the result is sim-
ply an extra term in the envelope-function Hamiltonian of
the form
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Here n is an index labeling the orbital part of the basis
functions, while s � 6 labels the sign of the z component
of the spin; a and b are Cartesian coordinate indices,
with ka � 2i≠�≠xa . The terms pa

nn0 and S
b
nn0 are matrix

elements of the operators pa and Sb , and vnn0 � �En 2

En0��h̄, where En is the energy of state n. In the derivation
of Eq. (2) it was assumed that En � En0 .

It should be noted that the matrix elements in Eq. (2) are
bulklike parameters with a step-function dependence at a
heterojunction. The microscopic interface effects treated
in Refs. [5] and [20] are not considered here.

The valence states of interest are labeled X, Y , and Z;
these states are derived primarily from p orbitals and be-
long to the G4 representation. To see which states n00 con-
tribute to Eq. (2), note that the vector p belongs to G4, with
G4 3 G4 � G1 1 G3 1 G4 1 G5, while the pseudovec-
tor S belongs to G5, with G4 3 G5 � G2 1 G3 1 G4 1

G5 [13]. Therefore, intermediate states of symmetry G3,
G4, and G5 are permitted in Eq. (2). These give rise to
three independent real constants:
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Terms also arise that are proportional to
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, (6)
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but it turns out that C0
3 � 0, because Sx changes sign under

the reflection �xyz� ! �xzy�.
Upon evaluating Eq. (2) for each of the G4 valence

states, one finds the following results:

WX6,X6 � 72��C4 1 C5�kz� ,

WX6,X7 � 7i2��C4 1 C5�ky� ,

WY6,Y6 � 62��C4 1 C5�kz� ,

WY6,Y7 � 22��C4 1 C5�kx� ,

WZ6,Z6 � 0 ,

WZ6,Z7 � 2��C4 1 C5�k6� ,

WX6,Y6 � 0 , (7)

WX6,Y7 � C3ky 1 ky�2C4 1 C5�
6 i�kxC3 1 �2C4 1 C5�kx� ,

WX6,Z6 � 6�kxC3 1 �2C4 1 C5�kx� ,

WX6,Z7 � 2�C3kz 1 kz�2C4 1 C5�� ,

WY6,Z6 � 7�kyC3 1 �2C4 1 C5�ky� ,

WY6,Z7 � 7i�C3kz 1 kz�2C4 1 C5�� ,

where k6 � kx 6 iky and �AB� � 1
2 �AB 1 BA�. Note

that the operator ordering obtained from G3 states is op-
posite to that associated with G4 and G5.

Of course, in addition to the second-order terms (7),
there is a first-order spin-orbit splitting D0 � 2i3S

y
XZ .

One can diagonalize the latter by transforming to the
j j, m� basis [22]
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In this basis, the linear-k Hamiltonian takes the form
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in which “H.c.” stands for Hermitian conjugate and
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Here �A, B� � AB 2 BA, and the constants C, C0, and Ci

are defined by
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3
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C is the usual linear-k coefficient for G8 bands [14,15],
while C0 is an analogous quantity that couples the G8 states
to the G7 split-off band [24,25]. Both of these terms appear
within symmetrized products, so they both contribute to the
Hamiltonian in bulk material.

However, Ci appears only within the commutator
�Ci , ka� � i�≠Ci�≠xa�. Therefore, the contribution from
Ci is nonvanishing only in inhomogeneous media. At an
abrupt heterojunction, ≠Ci�≠xa has the form of a d-like
function whose strength is equal to the change in Ci

across the junction. From Eqs. (9) and (10) one sees that
Ci couples the G8 light and heavy hole states. The form of
this coupling is mathematically the same as that generated
by the abrupt change in potential at the interface [5,11],
which is currently viewed as a primary source of optical
anisotropy in the quantum-well Pockels effect [3,4,6,7].

The question is thus: Is the change in Ci sufficiently
large to yield a significant anisotropy? The answer to this
question hinges on the magnitude of C4, which can be es-
timated by considering the contribution from the lowest-
lying G4 conduction states X 0, Y 0, and Z0. The relevant
coupling constants [17] are the off-diagonal spin-orbit cou-
pling D2 � 2i3S

y
XZ 0 , the momentum matrix element Q �

�ih̄�m�py
XZ0 , and the G4 energy gap Eg4 � EX 0 2 EX , in

terms of which
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Unfortunately, data on D2 are rather sparse. A few
values were given in Refs. [17] and [26], but these did not
include any pairs of lattice-matched semiconductors.
Therefore, the tight-binding model described in Ref. [17]
is used here to estimate D2 for a variety of other semicon-
ductors. The model is based on Harrison’s [27] universal
tight-binding parameters supplemented by Chadi’s [28]
tabulation of atomic spin-orbit splittings.

The G4 valence and conduction states are expressed as

jX� � �2jXc� 2 hjXa���
p

1 1 h2 ,

jX 0� � �hjXc� 2 1jXa���
p

1 1 h2 ,
(13)

where jXc� is a k � 0 Bloch sum of cation px orbitals,
jXa� is the same quantity for anions, and h is the probabil-
ity amplitude of the anion relative to the cation in the va-
lence state. This quantity is given by h � 2�Ec

p 2 Ea
p 1

Eg4��2Vxx [29], in which Ep is the Hartree-Fock energy
[27] of a valence atomic p state, Eg4 � ��Ec

p 2 Ea
p�2 1

4V 2
xx�1�2, and Vxx � 1.28h̄2�md2 [27], where d is the dis-

tance between neighboring atoms. Equation (13) may be
used to evaluate the relevant spin-orbit parameters [17]:
D0 � �Dc 1 h2Da���1 1 h2� ,

D0
0 � �h2Dc 1 Da���1 1 h2� , (14)

D2 � h�Da 2 Dc���1 1 h2� ,

in which Dc and Da are the atomic spin-orbit splittings
[28]. To complete the calculation of C4, one may estimate
Q from the measured Luttinger parameters g1 and g2 as
follows [17]: Q2 � h̄2 �g1 2 2g2 1 1� �E0

0 1
2
3D

0
0��2m.

The results of these calculations are presented in Table I
for several III-V semiconductors. The only input parame-
ters were the lattice constant a (d �

p
3 a�4) and the Lut-

tinger parameters g1 and g2. In many cases the values
of D0, D

0
0, and Eg4 (Eg4 � E0

0 1
1
3D0 1

2
3D

0
0) are known

from experiment, so a comparison offers a good test for the
reliability of the predicted values of D2. Such a compari-
son is given for GaAs, InP, GaSb, and InSb, along with
calculated values of D2 taken from Ref. [17]. The lat-
ter values were obtained from ab initio linear-muffin-tin-
orbital calculations, which should be more accurate than
Eq. (14). Experimental data for D2 from Ref. [26] are
also included.

The agreement between calculated and experimental
values of Eg4, D0, and D

0
0 is quite good, given the sim-

plicity of the model. In addition, the values obtained for
D2 are similar to those of Refs. [17] and [26]—with the
exception of InP, which has the right sign but is a factor
of 2 to 4 too small. Hence, the tight-binding predictions
for C4 should be roughly correct, although they tend to be
smaller than values obtained by other methods.

The results in Table I show that, as expected, C4 is about
an order of magnitude larger than C. The only significant
exception occurs for InAs, where the unusually small value
of C4 (for such heavy atoms) is due to the similarity of the
spin-orbit splittings of In and As.

The change in C4 across a heterojunction could be as
large as 0.48 eV Å if lattice matching were not an issue,
but for nearly lattice-matched materials this change is con-
siderably smaller. For example, at a GaAs�AlAs junc-
tion DC4 � 0.02 0.03 eV Å. In comparison, the X-Y
valence-band mixing coefficient for GaAs�AlAs junctions
was estimated to be 0.1–0.3 eV Å from a simple pseudopo-
tential model [5], 0.4–0.5 eV Å from tight-binding calcu-
lations [11], and 0.6 eV Å from experimental data fitting
[11]. Thus, the contribution from linear-k valence-band
mixing is not likely to be significant in GaAs�AlAs, pri-
marily because the atoms that differ (Ga and Al) are light
atoms with small spin-orbit splitting. (Recently, however,
Magri and Zunger [30] have asserted that the value of
0.6 eV Å obtained in Ref. [11] is at least an order of mag-
nitude too large. If this is true, then the linear-k contribu-
tion would be significant.)

The situation is more favorable in the case of
In0.53Ga0.47As�InP, where DC4 � 0.14 0.22 eV Å. Tight-
binding calculations show that the X-Y mixing coefficient
is about 2.9 eV Å for InAs-type interfaces and about
0.87 eV Å for InGaP-type interfaces [7]. Since DC4 is
2643
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TABLE I. Estimated values for C4 (eV Å) compared with data for C (eV Å) given in Ref. [16]. Input parameters are a (Å), g1,
and g2, and the values generated by the model are Eg4 (eV), D0 (eV), D

0
0 (eV), D2 (eV), and Q (eV Å). Additional rows contain

data from Refs. [17] and [26] for comparison.

Material a g1 g2 Eg4 D0 D
0
0 D2 Q C4 Ca

GaP 5.451 4.20 0.98 5.219 0.081 0.160 10.036 8.01 10.02 20.0055
10.066b 10.03

AlP 5.464 3.34 0.70 5.178 0.061 0.030 20.014 7.60 20.01
GaAs 5.653 7.10 2.02 4.643 0.386 0.209 20.087 8.36 20.05 20.0036

4.715c 0.340c 0.171c 20.085d 20.05
20.069b 20.04

AlAs 5.660 3.45 0.68 4.609 0.363 0.082 20.140 7.27 20.07 20.0020
InP 5.869 5.05 1.6 5.149 0.098 0.361 10.095 7.46 10.05 20.0144

4.969c 0.108c 0.50c 10.22d 10.11
10.398b 10.19

InGaAse 5.869 11.01 4.18 4.600 0.405 0.306 20.043 7.88 20.03
InAs 6.058 20.4 8.3 4.590 0.418 0.395 20.009 9.03 20.01 20.0112
GaSb 6.096 13.2 4.4 3.733 0.838 0.309 20.300 8.43 20.23 10.0007

3.77c 0.75c 0.33c 20.28d 20.21
AlSb 6.136 5.55 1.29 3.680 0.812 0.185 20.356 7.18 20.23 20.0060

20.448b 20.29
InSb 6.479 40.1 18.1 3.717 0.899 0.466 20.194 7.99 20.14 20.0092

3.918c 0.803c 0.39c 20.244d 20.17

aCalculated value from Ref. [16].
bValue extracted from experimental data fitting in Ref. [26].
cExperimental data from Ref. [17].
dCalculated value from Ref. [17].
eThis calculation was based on the virtual-crystal approximation.
16%–25% of the latter, linear-k mixing should have a
measurable influence on optical anisotropy in this system.
Like any spin-orbit-related effect, its magnitude is smaller
than the corresponding spin-independent effects, but its
influence should still be detectable.

In conclusion, it has been shown that the contribution
from p-like G4 states to the linear-k mixing of G8 valence
states is nonzero at a heterojunction and that its value is
about an order of magnitude larger than the linear-k terms
in a bulk crystal. This enhancement is sufficiently large to
have measurable consequences for the optical anisotropy
in the quantum-well Pockels effect.
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