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Spin Orthogonality Catastrophe in Two-Dimensional Antiferromagnets and Superconductors
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We compute the spectral function of a spin S hole injected into a two-dimensional antiferromagnet
or superconductor in the vicinity of a magnetic quantum critical point. We show that, near Van Hove
singularities, the problem maps onto that of a static vacancy carrying excess spin S. The hole creation
operator is characterized by a new boundary anomalous dimension and a vanishing quasiparticle residue
at the critical point. We discuss possible relevance to photoemission spectra of cuprate superconductors
near the antinodal points.
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A vigorous debate has been stimulated by photoemis-
sion experiments [1] showing that the gapped antinodal
quasiparticle excitations of the high temperature super-
conductors have a broad energy distribution curve (EDC).
The many proposals for this anomalous behavior include
(i) electron scattering by antiferromagnetic fluctuations
[2], (ii) one-dimensional (1D) fluctuations at intermediate
scales leading to 1D electron fractionalization [3], (iii) 2D
electron fractionalization induced by proximity to exotic
2D spin liquid states [4], and (iv) coupling to supercon-
ducting phase and vortex fluctuations [5].

The studies of this paper fall into category (i); however,
our results also extend into a quasi-1D regime, and
offer a different perspective on category (ii). We will
examine the spectral function (or EDC) of the gapped
antinodal quasiparticles [6] in the vicinity of a quantum
critical point between a d-wave superconductor and a state
with coexisting superconducting and antiferromagnetic
order. Our results will also apply to insulators in the
vicinity of a quantum transition between states with
antiferromagnetic order and a spin gap: the spectral
functions are then those of holes (and electrons) near
Van Hove singularities in the band structure of the spin-gap
state. Our perspective on the superconducting case differs
from that of [2] in that we depart from ground states in
which pairing correlations have already induced a gap
to fermionic excitations in the antinodal regions, rather
than from states with a Fermi surface. Appealing to the
proximity of a magnetic quantum critical point between
the former states allows us to make controlled statements
in a regime with strong coupling between the fermionic
quasiparticles (henceforth referred to generically as holes)
and the antiferromagnetic fluctuations.

Our primary result is that the proper characterization of
the damping of the holes by low-energy spin fluctuations
is provided by the framework of “boundary” critical phe-
nomena [7]. The hole Green’s function, Gh, is controlled
by a new nonzero boundary scaling dimension, hh. Conse-
quently, the hole quasiparticle residue vanishes at the zero
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temperature (T ) quantum critical point due to an “orthogo-
nality catastrophe” induced by a cloud of low-energy spin
excitations around the hole. The motion of the hole charge
does not play a dominant role: this may be viewed as a
form of “spin-charge separation,” but is not 2D electron
fractionalization in the sense of [4,8].

As has been discussed elsewhere [9], spin fluctuations
near the magnetic quantum critical point in the supercon-
ductors or insulators of interest are described by the fol-
lowing continuum Hamiltonian:

Hf �
Z

d2x ��p2
a 1 c2

1�≠x1fa�2 1 c2
2�≠x2fa�2��2

1 �r�2�f2
a 1 �g�24� �f2

a�2� . (1)

Here fa�x, t� (a � 1, 2, 3) is the component of the mag-
netization at wave vector G [usually G � �p , p�] at spa-
tial coordinate x and time t, pa is its canonically conjugate
momentum, the only nonzero equal-time commutation re-
lation is �fa�x, t�, pb�x0, t�� � idabd2�x 2 x0�, c1,2 are
velocities (possibly unequal to account for a quasi-1D
spatial anisotropy), r is the parameter which tunes the
system across the quantum critical point (�fa	 fi 0 in the
magnetically ordered phase for r , rc, and �fa	 � 0 oth-
erwise), and g is the crucial quartic self-interaction which
is relevant below 3D and is responsible for the nontrivial
universal scaling properties of the quantum critical point.
There are no explicit damping terms for fa fluctuations in
(1) because the systems of interest do not have a gapless
particle-hole continuum near the wave vector G [10].

We now inject a spin S hole into the system described
by Hf. We consider the hole spectrum near points of
higher symmetry in the Brillouin zone, with momentum
k � K1, where its dispersion has a vanishing k deriva-
tive, i.e., near Van Hove points like K1 � �p, 0�. We de-
note the hole creation operator in the vicinity of K1 by
c

y
1a�x, t�, with a � 2S, . . . , S a spin index (for the case

where the ground states are superconductors, c
y
1a is the
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creation operator for the Bogoliubov quasiparticles). Cou-
pling to fa fluctuations will scatter the hole to momenta
near K2 � K1 1 G: we denote the hole creation operator
near K2 by c

y
2a�x, t�, and it is assumed that K2 is also a

Van Hove point. The hole Hamiltonian is then

Hh �
Z

d2x

" X
i�1,2

µ
eic

y
iacia 1

X
m�1,2

amic
y
ia≠2

xm
cia

∂
1 gfa�cy

1aLa
abc2b 1 c

y
2aLa

abc1b�

#
.

(2)

Here La are the familiar �2S 1 1� 3 �2S 1 1� angu-
lar momentum matrices, the ami determine the band
curvatures near K1,2, and g is the coupling to the fa

fluctuations. Higher order couplings between the fa

and c1,2 are also possible, but are easily shown to be
irrelevant under the renormalization group (RG) discussed
below. We assume that the hole energies ei satisfy
e1 � e2 
 e0 . 0 [equality holds with K1 � �p, 0�,
K2 � �0, p�, and square symmetry], for otherwise the
hole scattering by fa fluctuations is nonsingular, and
direct perturbative computations of the hole spectrum are
adequate. The singularity in the value of e0 at the magnetic
transition at r � rc is weak and subdominant, and can be
safely neglected.

A key observation follows from a simple, tree-level, RG
analysis of Hf 1 Hh. We know that Hf at r � rc

is invariant under the rescaling transformation x ! xe2�,
t ! te2z� with z � 1. Applying this to Hh we see im-
mediately that the ami flow as dami�d� � 2ami: so the
band curvatures are irrelevant for the low-energy theory,
and the hole may be viewed as dispersionless.

Before embarking on a complete RG analysis of Hf 1

Hh, we make some qualitative observations on the hole
spectrum for r , rc, r . rc, and r � rc.

For r , rc, hole motion in the magnetically ordered
state has been studied earlier [11]. Because �fa	 fi 0,
there is a nonzero mean matrix element between the
c1a and c2a states, and we have to rediagonalize Hh to
obtain the bare hole dispersion. Simple considerations of
energy and momentum conservation show that there is an
infinitely sharp quasiparticle pole in the vicinity of the
absolute band minimum: the slow quadratic dispersion of
the hole prevents decay by emission of linearly dispersing
spin waves. At frequencies, v, above this pole, there is an
incoherent gapless continuum, but its spectral weight van-
ishes rapidly as v approaches the quasiparticle pole: after
the rediagonalization of Hh required by a nonzero �fa	, it
is easy to see that the matrix element for emission of small
momentum, Goldstone, spin wave modes is suppressed
by powers of the momentum. Similar considerations also
apply at other Van Hove points which are not global
minima. However, depending upon nonuniversal details
of the band structure, in some cases it may be possible
for the hole to emit large wave vector, high energy fa

quanta, and this would broaden the quasiparticle pole;
2618
for Hh such processes occur if one of the ami , 0, and
require momenta of order c1,2�ami or larger (assuming
Hh still applies at such momenta). Given the irrelevance
of the ami , the remainder of this paper will neglect this
nonuniversal decay. We will consider only low-energy
fa quanta, and assume that the high-energy processes
either are not present or contribute a small, background,
quasiparticle decay rate. If the latter were not true, there
would be no sharp quasiparticle-like peak or threshold in
the hole spectrum, and the analysis of this paper would
not be necessary.

Closely related considerations apply in the spin-gap
phase with r . rc [12,13], but with some important
differences: (i) the incoherent continuum is separated
from the quasiparticle pole by at least the spin-gap energy,
D � �r 2 rc�n , where n is the correlation length expo-
nent of the phase transition in Hf; (ii) the fa quanta are
no longer Goldstone modes, and so the matrix element for
emission of a fa quantum by the hole does not vanish at
zero momentum transfer.

The main purpose of this paper is to understand the
nature of the hole spectrum at the T � 0 quantum critical
point at r � rc, and its associated T . 0 quantum critical
region. The fa are now gapless critical excitations, but
not Goldstone modes. Consequently, there is no factor of
a small momentum suppressing their emission by the hole,
and perturbative corrections in g are infrared singular, as
has also been noted by Sushkov [13]. Our RG analysis
will identify the scale-invariant quantum field theory which
permits a resummation of the perturbative expansion, and
shows that there is no quasiparticle pole at T � 0 and
r � rc; instead,

Gh�v� � 2A�e0 2 v�211hh , (3)

where A is a nonuniversal amplitude, and the universal
exponent hh is computed below.

For the critical theory, we can set ami � 0. Further,
examination of the perturbation theory in g shows that
the presence of two hole flavors, i � 1, 2, makes no mate-
rial difference to the critical singularities: the fa ! 2fa

symmetry of Hf ensures that the hole self-energy has
terms only in even powers of g for which the hole flavor
returns to its original value. Consequently we can drop the
i index, and refer to a generic dispersionless hole ca. Af-
ter injection into the antiferromagnet at x � 0 (say), the
ca charge will remain localized at x � 0, and its spin
will couple to the fa fluctuations. So we are led to con-
sider the Bose-Kondo-like model [9,14,15], Hf 1 HS

of a single quantum spin, Ŝa , coupled to the bosonic fa

fluctuations where

HS � gŜafa�x � 0� , (4)

�Ŝa , Ŝb� � ieabgŜg , and Ŝa Ŝa � S�S 1 1�. The charge
density of the injected hole can couple only to the spin-
rotation invariant f2

a�x � 0�, and such a term is irrelevant
under the RG [9].
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The properties of Hf 1 HS have already been stud-
ied in detail [9] in the different physical context of Zn�Li
impurities in the cuprate superconductors; in this earlier
case the Ŝa spin was permanently confined near the im-
purity, while in the present situation there is no impurity
and Ŝa is the spin of the injected hole. Indeed, the rela-
tionship between Hf 1 HS and Hf 1 Hh is similar to
that between the familiar fermionic Kondo and x-ray edge
problems. However, the analogy is not perfect: it is con-
ventional in the x-ray edge problem to neglect the spin of
the injected hole, and merely couple its charge density to
the fermionic bath. Here the spin exchange with the fa

quanta is paramount in both cases.
The critical point of Hf defines a (2 1 1)-dimensional,

conformally invariant field theory, and HS is a boundary
perturbation along the line in spacetime at x � 0. This
perturbation flows to a fixed point which is invariant under
conformal transformations which leave x � 0 fixed. Cor-
relations of Ŝa are characterized by its boundary anoma-
lous dimension h0�2, which was computed to two-loop
order in an expansion in ´ � 3 2 d in [9].

We are interested here in the Gh � �cacy
a 	, and by (3)

we identify hh�2 as the boundary anomalous dimension
of ca, which is not simply related to h0. Gh involves an
overlap between eigenstates of Hf 1 HS and states in
which the hole has been removed (the latter are outside
the Hilbert space of Hf 1 HS). The needed results do
not follow from the previous analysis of Hf 1 HS alone,
and require extensions we describe here.

At one-loop order, we perform a standard momentum-
shell RG of Hf 1 Hh in d spatial dimensions, in
which fields with momenta between L and Le2�,
and all frequencies, are integrated out. This is fol-
lowed by the rescalings x ! xe2�, t ! te2�, fa !
fae�d211h���2fa, ca ! cae�d1hh���2. The RG flow of
the bulk couplings r , g is well known: g approaches
a finite fixed-point value g� at r � rc, while h � 0 at
one-loop order. For the hole, evaluation of the one-loop
graphs in Fig. 1 shows that hh � S�S 1 1�eg2, whereeg � g�c1c2�2d�4L2´�2�G�d�2� �4p�d�2�21�2 obeys the
same flow equation as that obtained earlier for Hf 1 HS

[9,14] (as expected):

deg�d� � ´eg�2 2 eg3. (5)

We observe that eg also approaches a fixed-point value, and
at which we have the anomalous dimension

FIG. 1. One-loop Feynman diagrams. The full line is ca and
the dashed line is fa .
hh � ´S�S 1 1��2 1 O �´2� . (6)

At the same order, a closely related computation shows that
h0 � e [9]. The extension of these results on the bound-
ary exponents to two (and higher) loops requires the field-
theoretic renormalization group and the results are
presented elsewhere [16]: at next order there is interfer-
ence between bulk and boundary interactions, and the
flow equation for eg involves g. This interference is a
novel feature of the present problem and is absent in the
fermionic Kondo and x-ray edge problems, where the
bulk degrees of freedom can be represented by free fields.
Direct numerical evaluation of the two-loop corrections
for the physical values ´ � 1 and S � 1�2 shows signifi-
cant changes from the one-loop values: hh changes from
0.375 to 0.087, while h0 changes from 1 to 0.232.

We also computed hh from a continuous time world-line
quantum Monte Carlo [17] simulation of a double layer
Heisenberg antiferromagnet at its quantum critical point
[18]. We measured Gh�t� (t is imaginary time) for a
single hole on a fixed site i, by relating it to correlators
of spin world lines at site i which do not flip in time
t. We obtained the estimate hh � 0.087 6 0.040 from
simulations on a 64 3 64 system by fitting to Gh�t� �
t2hh exp�2e0t�, in the range 2 # Jt # 6 (J is the in-
tralayer exchange, and e0�J � 2.102 6 0.016 was deter-
mined separately from the ground state energies of the
antiferromagnet with and without a hole); the numerical
data are on-line [19].
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FIG. 2. Large N [9] results for the imaginary part of the scal-
ing function Fh in (7). At large N , hh � 1�2. We used an
interpolation form for the fa propagator 1��k2 2 v2 1 m2 2
2iGv�, where m�T and G�T are universal functions of D�T
[20]. Both m and the damping, G, are nonzero even at r � rc
because the thermally excited fa quanta scatter strongly off
each other by the nonzero fixed-point value of the bulk inter-
action, g, in Hf. For r � rc we used m � G � T , and for
r . rc we used G � m�5 � T .
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In the r $ rc, T $ 0 vicinity of the critical point,
Eq. (3) generalizes to

Gh�v� �
A

T12hh
Fh

µ
v 2 e0

T
,
D

T

∂
, (7)

where A and e0 are the same constants appearing in (3)
(they have absorbed a nonuniversal renormalization from
the coupling to fa modes), while Fh is a completely
universal function. We obtained numerical results for Fh

using the large N method discussed in [9] and the results
are shown in Fig. 2. The k dependence of Gh arises only
from the irrelevant ami couplings, and their main effect
is to replace e0 by the actual hole dispersion near the
Van Hove point.

We conclude by discussing possible physical applica-
tion of our results to photoemission measurements on the
cuprate superconductors. We have already argued else-
where [9,21] that (1) should be a reasonable description of
the antiferromagnetic fluctuations in the low and moderate
doping regime, both above and below the superconduct-
ing Tc. There is evidence from NMR [22] and neutron
scattering experiments [23] that the quantum critical re-
gion of the r � rc critical point describes the antiferro-
magnetic fluctuations above Tc; so for the same systems,
the r � rc spectrum in Fig. 2 should apply to photoemis-
sion at the antinodal points. The proximity of such a mag-
netic quantum critical point may be associated with the
onset of quasi-1D correlations, but this is incidental to our
theory — the anisotropy is merely reflected by changes to
the couplings in Hf. Below Tc, the measured antinodal
spectrum [24] is similar to the r . rc spectrum in Fig. 2:
this is accounted for in our approach by the reasonable as-
sumption that the onset of superconductivity induces the
spin-gap-like correlations and so increases the value of the
effective r controlling the magnetic fluctuations. The high
frequency tail of the EDC both above and below Tc should
decay as 1�v12hh . Note that this tail is present for any
nonzero value of hh, with a nonuniversal amplitude deter-
mined by A. However, our estimate of the value of hh

here is quite small, and it appears that the interaction ef-
fects discussed here cannot explain the prominent tail seen
in current experiments on their own. It is likely that the
strong disorder in the local gap values (as seen in recent
STM measurements [25]) also plays an important role.
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