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Longitudinal and Transverse Waves in Yukawa Crystals
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A unified theoretical treatment is given of longitudinal (or compressional) and transverse modes in
Yukawa crystals, including the effects of damping. Dispersion relations are obtained for hexagonal
lattices in two dimensions and bcc and fcc lattices in three dimensions. Theoretical predictions are
compared with two recent experiments.
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In a Yukawa system, charged microparticles interact
with each other through a Yukawa or a screened Coulomb
potential. For a point charge Q located at the equilib-
rium position R � x̂X 1 ŷY 1 ẑZ, this potential is
given by f�r� � �Q�r�e2r�lD , where r � jr 2 Rj �
��x 2 X�2 1 � y 2 Y �2 1 �z 2 Z�2�1�2. Various physical
systems, including colloidal crystals and strongly coupled
dusty plasmas, can be modeled by the Yukawa potential.

In a dusty plasma, highly charged microparticles are sus-
pended in a gaseous electrical discharge. Such a system is
said to be strongly coupled when the coupling constant
G�� Q2��aT �� for microparticles is equal to or greater
than unity. (Here, T is the temperature of each micropar-
ticle, and a is the interparticle spacing.) When G ¿ 1,
the particles have been shown to crystallize [1–4], that is,
organize themselves into an ordered spatial structure that
we call a Yukawa lattice.

Plasma crystals allow direct optical imaging of particle
motion. Compared with colloidal suspensions, the par-
ticles are weakly damped. Particle motion can be excited
by laser manipulation. This makes it possible to excite
and test the dispersion relations of certain types of lon-
gitudinal [5–10] and transverse waves [11–15] predicted
by theory. (These waves have antecedents in the theory
of one-component plasmas (OCPs) [16–20].) The ex-
perimentally measured waves in dusty plasma crystals in-
clude the acoustic [21] and lattice waves [22], both of
which are longitudinal waves, and, most recently, a trans-
verse wave [23].

In laboratory experiments involving waves in two-
dimensional Yukawa lattices (or monolayers), the micro-
particles form a hexagonal lattice. The waves experience
a frictional drag due to the background neutral gas as
well as ions. This drag has a significant effect on the
dispersive properties of the waves. In order to compare
experimental data with theory, it is necessary to develop
theoretical models in which the structure of the crystal as
well as damping are included as essential elements.

In this Letter, we present a unified analysis of lon-
gitudinal and transverse waves in a Yukawa crystal,
including the effects of damping. Our work complements
and extends a recent theoretical study and molecular
0031-9007�01�86(12)�2569(4)$15.00
dynamics simulation of longitudinal and transverse
waves in a Yukawa liquid [24,25]. Our method is based
on the harmonic approximation, which is standard in the
theory of crystal lattices and has been used in earlier
studies of two- and three-dimensional Coulomb crystals
[17,26]. We derive dispersion relations for the different
waves from a master dispersion relation by considering
different regimes of the wave number k and the so-called
screening parameter k � a�lD , which is the ratio of the
interparticle spacing and the Debye length lD . [Here,
lD � �l22

De 1 l
22
Di �21�2, where lDe and lDi are the elec-

tron and ion Debye lengths, respectively.] We compare
quantitatively the predictions of the theory with available
experimental data on two-dimensional monolayers pro-
duced in the laboratory. It has been demonstrated experi-
mentally that, in a two-dimensional system, the Yukawa
potential is a good approximation for the interaction
between microparticles [27]. We assume that this poten-
tial also holds in a three-dimensional crystal under
microgravity conditions. Based on the analogy with
OCPs [28], it is generally believed that in three dimen-
sions the preferred crystal structure is a bcc or fcc lattice,
depending on the value of k. Indeed, there is experi-
mental evidence in three-dimensional laboratory dusty
plasmas of the appearance of bcc and fcc structures,
mixed with hexagonal structures [1,29]. In anticipation
of future microgravity experiments [30] where pure bcc
and fcc lattices may be realized, we make predictions
for two-dimensional damped waves in three-dimensional
bcc and fcc lattices.

For horizontal linear modes, we write r̃ � x̂j 1 ŷh

as the two-dimensional displacement. The linear displace-
ment obeys the equation of motion,

d2r̃�X, Y , Z, t�
dt2 1

n
dr̃�X, Y , Z, t�

dt
�

Q
Md

E�r�X, Y , Z�, t� , (1)

where n represents the frictional drag coefficient, Md

is the mass of a point particle, and the electric field is given
by E � 2=f. We assume that the zx plane is a plane
© 2001 The American Physical Society 2569
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of reflection symmetry of the crystal. Assuming that the
components of the linear displacement are independent of
Z, we write �j, h� � �j0, h0� exp�i�kxX 1 kyY � 2 ivt�.
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It is then straightforward to show that there are two
vibrational normal modes given by the dispersion
relation,
v6�v6 1 in� � V2
6�k, k� �

1
2 �F�k, k� 1 F�k, k�� 6 ��F�k, k� 2 F�k, k��2 2 4G2�k, k��1�2. (2)

In Eq. (2), we have redefined the various physical quantities to make them dimensionless. We have rescaled
�v, n��v0 ! �v, n�, where the frequency v0 � Q�Mda3�21�2 is proportional to the dust plasma frequency,
�X, Y , Z, R��a ! �X, Y , Z, R�, and ka ! k. The functions F, F, and G represent infinite sums over lattice sites and
are given by

F�k, k� � 4

∑ X
X.0,Z

F�X, 0, Z� sin2

µ
kxX

2

∂
1

X
Y.0,Z

F�0, Y , Z� sin2

µ
kyY

2

∂
1

X
X,Y.0,Z

F�X, Y , Z� �1 2 coskxX coskyY �
∏

,

(3a)

G�k, k� � 4
X

X,Y.0,Z

G�X, Y , Z� sinkxX sinkyY , (3b)

F�k, k� � 4

∑ X
X.0,Z

F�0, X, Z� sin2

µ
kxX

2

∂
1

X
Y.0,Z

F�Y , 0, Z� sin2

µ
kyY

2

∂
1

X
X,Y.0,Z

F�Y , X, Z� �1 2 coskxX coskyY �
∏

,

(3c)
with the spring constant matrices,

F�X, Y , Z� � R25e2kR�X2�3 1 3kR 1 k2R2�

2 R2�1 1 kR�� , (4a)

G�X, Y , Z� � �XY�R5�e2kR�3 1 3kR 1 k2R2� . (4b)

In Eqs. (3a)–(3c), the summations over X, Y , and Z are
carried out over their entire range except when specified
otherwise. In particular, the specification X . 0 �Y . 0�
implies that the summation is carried only over positive
values of X �Y �.

Equations (2)–(4) give the general dispersion rela-
tions in three-dimensional Yukawa crystals. If we set
Z � 0 and omit the sums over Z, we obtain the two-
dimensional dispersion relation for a monolayer. Special
cases of the two-dimensional dispersion relation have
been discussed earlier in [11] and [22].

Acoustic limit.—We choose k to be parallel to the x
axis. The longitudinal (or compressional) and transverse
“acoustic” speeds can then be calculated in the long-
wavelength limit from the relation C2

l,t�k� � �V2
1,2�k, k��

k2�k!0. In the k ø 1 regime, the longitudinal acoustic
speed can be expanded as a Frobenius series, C2

l �
c22k22 1 c21k21 1 cln lnk 1 c0 1 c1k 1 c2k2 1 . . . .
In a three-dimensional lattice, it is straightforward to
show analytically from the dispersion relation (2) that
C2

l 	 c22k22, where c22 � k2C2
l jk!0 � 8p �16p� for

a bcc (fcc) lattice. However, if we scale v and n by
the standard plasma frequency vpd � �4pndQ2�Md�1�2

instead of the frequency v0 � Q�Mda3�21�2 and note
that nd � 2�a3 �4�a3� for a bcc (fcc) lattice, we ob-
tain the so-called dust-acoustic-wave dispersion relation
vl�vl 1 in� � C2

l k2�k2, in agreement with the dis-
persion relation obtained from other three-dimensional
strong-coupling models in the strongly coupled regime
�G ¿ 1� [7–9,24,25]. This dispersion relation also
follows in the limit k ! 0, k ø 1 of the exact unified
dispersion relation derived in [10] for an infinite sequence
of parallel sheets in three-dimensional space interacting
via an electrostatic force that depends only on the coordi-
nate perpendicular to the sheets. This dispersion relation
has been confirmed in a number of experiments in the
moderately strong [31] as well as strong-coupling [21]
regimes.

For the two-dimensional hexagonal monolayer, we
obtain c22 � 0, and c21 � kC2

l jk!0 � 4p�
p

3. In this
case, it follows that Cl 	 �4p�

p
3 k�1�2 � 2.69k21�2,

which is in agreement with the longitudinal acoustic speed
calculated numerically in [11].

A one-dimensional longitudinal acoustic speed, valid
for a chain of point particles, can be derived from the
dispersion relation (2) by setting Y � Z � 0 and omitting
the sums over Y and Z. The infinite sum over X then can
be carried out exactly to obtain

C2
l � 2

µ
k 2 ln�ek 2 1� 1

k�ek�k 1 2� 2 2�
2�ek 2 1�2

∂
, (5)

which reduces to C2
l � 22 lnk in the limit k ø 1. We

thus note that the k dependence of the acoustic speed
for compressional modes depends sensitively on the
geometry of the crystal: It is proportional to k21 for a
three-dimensional lattice, to k21�2 for a two-dimensional
lattice, and to �2 lnk�1�2 for a one-dimensional chain.

The acoustic velocity of transverse modes in a two-
dimensional hexagonal lattice is also isotropic, as shown
numerically in [11]. We can demonstrate this as a spe-
cial case of the general dispersion relation (2) for the
transverse modes in the limit k ! 0, k ø 1. We obtain
vt�vt 1 in� � C2

t k2, with C2
t � c0 1 c1k 1 c2k2 1

. . . 	 0.26 2 0.02k2. In three-dimensional lattices, we



VOLUME 86, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 19 MARCH 2001
FIG. 1. The phase speed of undamped transverse lattice waves
propagating parallel (u � 0, solid line) and perpendicular (u �
p�2, dashed line) to a primitive translation vector.

can calculate the acoustic velocity of transverse modes
as a power series in k, C2

t 	 0.037 2 0.0013k2 1

0.000 018k4 which is in approximate agreement with the
theoretical calculation for Yukawa liquids [25].

Lattice waves.—We have seen above that the acoustic
(or k ! 0) limit is isotropic in wave number space. Except
in this special limit, the waves are generally anisotropic,
and we call them lattice waves. We distinguish two types:
the compressional (or longitudinal) lattice wave (CLW)
and the transverse lattice wave (TLW). To obtain disper-
sion relations for lattice waves in hexagonal monolayers,
we choose the x axis to be parallel to a primitive trans-
lation vector. If u is the angle between the wave number
k and a primitive translation vector, then kx � k cosu and
ky � k sinu. If u � 0, the dispersion relation (2) simpli-
fies to produce two branches, where

v1�v1 1 in� � vl�vl 1 in�

� 2
X

X,Y ,Z

F�X, Y , Z� sin2

µ
kX
2

∂
(6a)

describes the longitudinal modes, and

v2�v2 1 in� � vt�vt 1 in�

� 2
X

X,Y ,Z

F�Y , X, Z� sin2

µ
kX
2

∂
(6b)

describes the transverse modes. The particle motion in
these two cases is parallel and perpendicular to k, re-
spectively. Similar dispersion relations can be written for
longitudinal and transverse waves when u � p�2, with
v2 � vl and v1 � vt .

In Fig. 1, we plot the phase speeds of the parallel �k�
and perpendicular ��� TLW as a function of k for k � 1
when the frictional damping is zero. In the limit k ! 0,
the phase speeds of the parallel �u � 0� and perpendicular
�u � p�2� TLW tend to the acoustic limit but deviate
significantly from this limit for nonzero values of k. The
TLW is, in general, strongly anisotropic. In the regime
k # 5, whereas the speed of the parallel TLW increases,
that of the perpendicular TLW decreases — a feature that
can be tested by changing the direction of manipulation by
a laser in an experiment.

Effects of damping and comparison with experi-
ments.—We now consider the effects of frictional damp-
ing and demonstrate its important role in experiments.
Both the experiments discussed in this Letter use laser
pressure on particles to excite waves and measure the
real and imaginary parts of the complex wave number
k � kr 1 iki . Without damping, one obtains ki � 0 and
the waves propagate unattenuated in space. In view of the
experimental uncertainties in crucial parameters such as
k and n, it is important to carry out experimental tests
of the real as well as the imaginary part of k predicted
by theory.

In Fig. 2, we compare the predictions of the theoretical
dispersion relation (6a) with experimental data points (rep-
resented by squares) for the approximate parameters given
in [22]. These results confirm the interpretation that the
CLW was excited in the Kiel experiment [22].

We now revisit the data from the Iowa experiment on
transverse waves in a two-dimensional hexagonal lattice
[23,32]. The dispersion relation for acoustic waves without
damping (that is, n � 0), obtained earlier in [11], was
used in [23] to fit the experimental data on kr �v�. In
the experiment, ki�v� is also measured but a theoretical
fit was not attempted because the results given in [11]
did not include the effect of damping. If the dispersion
relation is of the form k � k0�v� for n � 0, we can obtain
perturbative corrections to this dispersion relation for small
damping by writing

kr 1 iki 	 k0�v 1 in�2�

	 k0�v� 1
≠k0

≠v

Ç
n�0

µ
in
2

∂
1 O�n2� . (7)

Equating the real and imaginary parts of Eq. (7), we obtain
kr 	 k0�v� and ki 	 �n�2� �≠k0�≠v�n�0 � n��2Vg0�,
where Vg0 is the group speed in the absence of damping.
Clearly, while the correction to kr due to small n is of
order n2, the correction to ki is of order n. This explains
why, if the damping is weak, the dispersion relation for
zero damping can be used to fit kr �v�, but such a fit
cannot detect deviations from theoretical predictions of
order n, reflected in ki�v�.

In Fig. 3, for experimentally relevant parameters
[23,32], we show the fit for the theoretical dispersion
relation including the effect of damping for two different
values of the angle u. On the basis of this analysis,
taking into account the size of the error bars, it appears
that the waves excited in the Iowa experiment correspond
approximately to u 	 0.

One of the important features of longitudinal as well as
transverse modes in the lattices is “negative dispersion”:
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FIG. 2. The dispersion relation for the compressional lattice
wave (solid line) is compared with experimental data (squares)
from [22].

as k increases beyond the point where the group speed
of the wave vanishes and standing waves can form, we
eventually enter a regime of k where the group speed
becomes negative. From Eq. (7) as well as Fig. 3, it is
evident that, when the dispersion relation kr � kr �v�
approaches the limit Vg0 ! 0, ki increases sharply.
The mode is then heavily damped in space, and it is
difficult to observe any negative dispersion. This is
actually seen in [23], where it appears to be difficult to
push the experiment beyond a certain value of the real
frequency v.

In summary, we have presented a unified theoretical
treatment of longitudinal (or compressional) and transverse
waves in Yukawa crystals formed in a dusty plasma. We
make theoretical predictions on two-dimensional hexago-
nal monolayers as well as three-dimensional bcc and fcc
crystals. While the acoustic-wave limit of the relevant dis-
persion relations is isotropic in k, significant anisotropy
develops at nonzero values of k. We have found that the
k dependence of the compressional waves depends sensi-
tively on the dimensionality of the crystal. We have con-
sidered the effects of damping and compared theoretical
dispersion relations quantitatively with experimental data
[22,23]. We have also obtained other general dispersion
relations that can be tested by future experiments. In par-
ticular, the change in the magnitude of the phase veloci-
ties of the waves as the wave number vector is oriented in
different directions of the first Brillouin zone can be easily
tested by changing the direction of laser manipulation. Be-
cause the damping depends inversely on the group speed
(when damping is weak), the wave with the larger group
speed will suffer less damping than that with the smaller
group speed.

FIG. 3. The dispersion relation for the transverse lattice waves
(solid line for u � 0, dashed line for u � p�2) is compared
with experimental data from [23].
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