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Grazing and Border-Collision in Piecewise-Smooth Systems: A Unified Analytical Framework
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A comprehensive derivation is presented of normal form maps for grazing bifurcations in piecewise
smooth models of physical processes. This links grazings with border-collisions in nonsmooth maps.
Contrary to previous literature, piecewise linear maps correspond only to nonsmooth discontinuity bound-
aries. All other maps have either square-root or �3�2�-type singularities.
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Many physical systems are characterized by the occur-
rence of nonsmooth events. Examples abound, including
vibroimpacting mechanics and collision dynamics [1],
switching electronic circuits [2], stick-slip motion [3],
many physiological systems [4], and more generally any
hybrid dynamical process involving discrete events. Such
phenomena are often modeled by sets of piecewise-smooth
(PWS) ordinary differential equations (ODEs), which
are smooth in regions Si of phase space, smoothness
being lost as trajectories cross region boundaries Si,j;
see Fig. 1. Such models can exhibit rich bifurcation phe-
nomena unique to their nonsmooth character, including
so-called grazing, which occurs when a trajectory hits a
boundary set Si,j tangentially. Grazing events are known
to lead to a multitude of complex dynamical transitions,
such as period-adding cascades and sudden transitions
to a chaotic attractor, which have been observed both
analytically [5,6] and experimentally [2,3,7]. However,
the general theory is incomplete.

To develop a predictive tool for analyzing the observed
dynamics caused by grazing bifurcations, one must con-
struct appropriate normal form maps local to the grazing
point. In the literature dealing with bifurcations of non-
smooth systems (e.g., [8]), it is often conjectured that such
mappings are piecewise linear if the piecewise-smooth vec-
tor field is continuous across the boundaries. If this conjec-
ture were true then their bifurcations could be studied by
using the theory of C bifurcations [8] or border-collisions
[9]. In contrast, if the system states are discontinuous, such
as for a restitution law in impact oscillators, then the maps
are known to have a square-root singularity [5,10]. It re-
mains to be proved whether grazing in a PWS system with
a continuous vector field leads to a piecewise linear map
in general. Our analysis presented here indicates that this
is often not the case [see also [6] for hypotheses that lead
to a �3�2�-type map].

In this Letter, we propose a unified analytical frame-
work for studying the local dynamics near grazing of
general PWS systems. We establish a clear relationship
between the continuity properties of the vector field at the
grazing point and the functional form of the local map as-
sociated with it. We find that if grazing occurs with a
smooth boundary [see Fig. 1(a)] the local map is indeed
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piecewise smooth but never piecewise linear. In contrast,
if the boundary is itself nonsmooth and grazing takes place
at a corner-type singularity where the vector field is dis-
continuous [see Fig. 1(b)], then the mapping is piecewise
linear. We term this event a corner-collision bifurcation
and we claim that this implies a border-collision of the
corresponding local map.

These findings have immediate theoretical and experi-
mental relevance for understanding phenomena in physi-
cal systems characterized by transitions between different
smooth functional forms in macroscopic time scales. Ac-
cording to the nature of the system under investigation, we
show that grazing events yield bifurcation scenarios which
can be classified using different local maps. The overall
results are summarized in Table I. Note that while there
exist classification strategies for bifurcations in piecewise
linear or square-root maps [9,10], the dynamics of maps
with �3�2�-type singularities have not been fully analyzed.

The analytical framework we propose uses formal power
series expansions and asymptotics which together give a
synthetic analytical description of the grazing normal form
map for a generic PWS system. We begin by assuming that
sufficiently close to the grazing or corner-collision point,
the phase space region under consideration is divided into
two regions S1 and S2 by some boundary, S (see Fig. 1).
This comprises either a smooth manifold [Fig. 1(a)] or
a triangular wedge when projected onto a general plane
[Fig. 1(b)]. In the former case, the discontinuity boundary
is described by the zero set of a smooth codimension-one
surface H�x� � 0. In the latter, the wedge is described
instead by two smooth codimension-one surfaces S1 and
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FIG. 1. Two-dimensional sketch graphs of (a) grazing and
(b) corner-collision bifurcations.
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TABLE I. Relationship between the properties of the system at
the grazing point and the type of singularity in the corresponding
local map.

System at grazing pt. Map singularity

Nonsmooth boundary Piecewise linear
Smooth boundary:

F Discontinuity in
x Square-root [10]

Bounded F Square-root
C0 Fx �3�2�-type
C1 Fxx �3�2�-type

S2 which are given by the zero sets of differentiable func-
tions H1�x� and H2�x�. These sets are supposed to intersect
along a smooth codimension-two surface C (the corner) at
a nonzero angle, i.e., =H1 3 =H2 fi 0. In either case, the
system near grazing can be described by the PWS ODE:

�x :� F�x� �

Ω
F1�x�, if x [ S1 ,
F2�x�, if x [ S2 , (1)

where x [ �n, F1, F2: �n � �n are supposed to be suf-
ficiently smooth and defined over the entire local region
under consideration. For the sake of simplicity we further
assume that the surfaces defined by the zero sets of H�x�,
H1�x�, and H2�x� are flat up to a sufficiently high order.
Note that this may be assumed without loss of generality
by making an appropriate sequence of near-identity trans-
formations [11].

We say that a grazing occurs when a trajectory intersects
a smooth boundary S tangentially. Without loss of gener-
ality this can be assumed to occur at the point x � 0 at
which we further require that (a) H0 � 0, (b) =H0 fi 0,
(c) �=H0, F0

i � � 0, and (d) �=H0, F0
ixF0

i � . 0. Here a su-
perscript 0 represents a quantity evaluated at the grazing
point x � 0. In contrast, if the discontinuity boundary is
nonsmooth at x � 0, then a corner-collision bifurcation
is said to occur under similar generic hypotheses, when
the trajectory intersects S at this point. In both cases, we
assume that S is never simultaneously attracting from re-
gions S1 and S2, so that so-called Filippov solutions (or
sliding modes) cannot exist. This final assumption can be
similarly expressed by appropriate inequalities which we
omit for brevity. (For the case of grazing in the presence of
sliding motion, a complete analysis by di Bernardo, Kowal-
czyk, and Nordmark will be written up elsewhere.)

To perform the analysis, we make use of the concept
of discontinuity mapping (DM); see [6]. This is the local
map that describes the correction that must be made to
the global Poincaré map from surfaces in S1 in order
to describe trajectories that pass through region S2 close
to x � 0. The DM is derived analytically by considering
´ perturbations of a grazing or corner-colliding trajectory
in the presence of the discontinuity boundary (see Fig. 2)
by considering Taylor expansions of the flows F1 and F2
defined by
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FIG. 2. Local analysis of grazing. A sketch graph of the three-
dimensional case.

≠Fi

≠t
� Fi�Fi�x, t��, Fi�x, 0� � x ,

i �

Ω
1 if x [ S1 ,
2 if x [ S2 .

As the vector fields are smooth, the flows Fi�x, t� can be
expanded in Taylor series about the grazing point �0, 0�:

Fi�x, t� � x 1 F0
i t 1 ait

2 1 bixt 1 cit
3 1 dix

2t

1 eixt2 1 fit
4 1 gix

3t 1 hix
2t2

1 jixt3 1 O�5� , (2)

where ai , bi , ci , di , ei , fi , gi , hi , ji are the matrix and
tensor coefficients of the expansion and O�5� is a shorthand
for terms of order at least 5.

Consider first the case of a grazing bifurcation and let
xg�t� � F1�0, t� be the trajectory which grazes the bound-
ary at x � 0 when t � 0. Now, consider perturbations
to xg of size ´ such that, for some unit vector x0, along
the trajectory x�t� � F1�´x0, t� there exists some t1 �
2d , 0 at which the perturbed trajectory, x�t�, crosses
S at x � x̄ passing from S1 into S2. It is possible to work
within a Poincaré section so that this condition is true if
�=H, x0� , 0 (see [11]). The analysis can be split into
three stages: motion in S1 before the first crossing of the
switching manifold, motion in S2, and finally motion after
the second crossing of S from S2 to S1.

The first step is to use the Taylor expansions (2) in or-
der to derive an asymptotic expression for d. In so do-
ing, we find a unique positive solution for d which can
be expressed as an asymptotic expansion in

p
´ of the

form d � g1´
1

2 1 g2´ 1 g3´
3

2 1 O�´2�, where the co-
efficients g1, g2, g3 are expressed solely in terms of F1,2
and their derivatives evaluated at the grazing point. Simi-
larly, knowing d, one can derive an estimate for x̄; that is,
x̄ � x1´

1
2 1 x2´ 1 x3´

3
2 1 O�´2�.

In the second stage, the motion evolves on the other
side of the boundary until after some time t2 � D . 0,
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S is crossed again at x � x̂. Here, we have H�x̂� �
F2�x̄, D� � 0. Using the Taylor series expansion of F2
about the grazing point and the quantities computed in the
previous stage, D can now be obtained as an asymptotic
expansion in ´. Ignoring the trivial solution D � 0, we
get D � n1´

1
2 1 n2´ 1 n3´

3
2 1 O�´2�, where again the

coefficients can be expressed in terms of the vector field
and its derivatives evaluated at the grazing point.

In order to finally arrive at the DM, we proceed through
the third stage as follows. We solve from the point x̂ �
F2�x̄, D�, backwards in time through a time 2t2 using flow
F1 until we hit the Poincaré section containing the initial
point ´x0. Here, we present the case of relevance to a
periodically forced nonautonomous system where the ap-
propriate Poincaré section is defined stroboscopically by
t � 0. The more general case of autonomous systems
can be treated similarly but leads to an algebraically more
cumbersome expression. The discontinuity mapping is
then the map from the initial point ´x0 to the final point
xf � F1�x̂, 2t2�, where for the zero-time Poincaré section
t2 � D 2 d. Using the asymptotic expansions for d, x̄,
D and the expansion for x̂ � F2�x̄, D� we can then sys-
tematically express xf as a Taylor series in

p
´.

Consider first the case of discontinuity of the vector field
at the grazing point F0

1 fi F0
2 . Here we find the leading

order term in xf is O�´
1
2 �. Specifically, we have xf �

�F0
2 2 F0

1 �n1´
1
2 1 O�´�. (Note that a square-root singu-

larity is also observed in the case where F has a d-function
discontinuity at x � 0 [10].)
Next, suppose instead that the vector field is continuous
at the grazing point but has discontinuous Jacobian, i.e.,
F0

1 � F0
2 and F0

1x fi F0
2x . Then the O�´

1
2 � contribution

to xf vanishes and it is possible to show that the O�´�
contribution to the DM is just the identity. Hence the
leading-order nontrivial term is O�´

3
2 �. This is also true

if the Jacobian is continuous but the Hessian is not, i.e.,
F0

1 � F0
2 , F0

1x � F0
2x , but F0

1xx fi F0
2xx .

Lengthy algebraic manipulations [11] allow the analyti-
cal derivation of the leading-order part of the discontinu-
ity mapping in the two cases treated above. This in turn
allows explicit expressions for the normal forms associ-
ated with hyperbolic periodic orbits undergoing grazing
in general n-dimensional PWS systems. Specifically, we
present here formulas for the case when the grazing tra-
jectory is part of a hyperbolic mT -periodic orbit p�t� of a
T -periodically forced system. That is (omitting the super-
script 0 on each quantity involving F and H):

(I) If the vector field is discontinuous at grazing, we
have

x �

Ω
Nx 1 Mm, if �=H, x� . 0 ,
Nw

p
j�=H, x�j 1 Mm 1 h.o.t. if �=H, x� , 0 ,

where

w � 2�F2 2 F1�
�=H, F2xF1�
�=H, F2xF2�

µ
2

�=H, F1xF1

∂ 1
2

;

grazing occurs at m � 0, and N and M are the linear parts
of the Poincaré map calculated using flow F1 alone.

(II) If the vector field is continuous at x � 0, i.e, F1 �
F2 :� F, but has discontinuous Jacobian (or Hessian):
x �

(
Nx 1 Mm, if �=H, x� . 0 ,

N�x 1 v1�j�=H, x�j�
3
2 1 V2x�j�=H, x�j�

1
2 1 v3�=H, F2xx� �j�=H, x�j�

1
2 � 1 Mm if �=H, x� , 0 ,

where

v1 �
1

�=H, F1xF1�
3
2

Ω
2
3

�F2xx 2 F1xx�F2 1 2F2xF1xF 2
2
3

��F1x�2 1 2�F2x�2�F 2
2

�=H, F2xF2�
�F2x 2 F1x�F

?

∑
2
3

�=H, �F2xxF2
2 1 �F2x�2F2�� 1 �=H, �F2xF1x 2 2�F2x�2�F� 1 �=H, F2xxF2�

∏æ

V2 �
2p

�=H, F1xF1�
�F2x 2 F1x� v3 �

2

�=H, F2xF2�
p

�=H, F1xF1�
�F2xF2 2 F1xF1� .
So, contrary to what has been assumed in the litera-
ture, our results rule out the possibility of piecewise linear
maps associated to grazing events involving a smooth dis-
continuity boundary. However, experiments on a certain
class of electronic circuits, so-called dc/dc power convert-
ers, indicate that piecewise linear maps can indeed be ob-
served at a corner-collision point [12]. To prove that this
is true, we must adapt the above analytical framework in
order to take into account the geometry of the corner. For
brevity, we consider only the so-called external corner-
collision depicted in Fig. 1(b); the internal case can be
studied similarly [13].
With careful consideration of higher-order terms, the
discontinuity mapping can again be constructed by expand-
ing the system flows about the corner-collision point. Now,
though, the linear terms in the expansions can be shown
to be sufficient to completely describe the local dynam-
ics near the corner. This can be explained heuristically
that in the grazing case a locally parabolic tangency oc-
curs while at a corner-collision the time spent “inside” the
corner varies linearly with ´. Specifically, it is possible to
show that, taking into account trajectories that do not cross
the wedge, the DM is simply
2555
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FIG. 3. Theoretical prediction (dashed line) and numerical
simulation (solid line) of the change to the local behavior
of Eq. (3) near grazing, when (a) the stiffness or (b) the
damping is varied across S. xf 2 ´x0 is plotted against ´. The
parameters are set to be (a) k1 � 1, k2 � 2, z1 � z2 � 0.1;
(b) k1 � k2 � 2, z1 � 1, z2 � 0.1; while b1 � b2 � 1.

x �

Ω
x, if noncrossing,
x 1 �F0

1 2 F0
2 � �a, x� 1 o�jxj� if crossing,

where a � J2 2 �J2, F0
1 �J1 with Ji � =H0

i ��=H0
i , F0

i �.
Example 1.—As a simple representative example

we consider the case of one-degree-of-freedom forced
damped harmonic motion in a medium whose character-
istics change at x � 0:

ẍ 1 zi �x 1 k2
i x � bi cos�t�, i �

Ω
1 if x . 0 ,
2 if x , 0 .

(3)

In this case, the boundary between the two regions of
smooth dynamics S1 and S2 is the line S :� �x � 0	. The
change in the medium is modeled by a variation of the
linear stiffness (k1 fi k2), damping coefficient (z1 fi z2)
or amplitude of the forcing term (b1 fi b2). Recasting (3)
as a set of first-order ODEs, it is possible to see that the
vector field is continuous but has discontinuous Jacobian if
b1 � b2 and k1 fi k2 or z1 fi z2, while it is discontinuous
if b1 fi b2. Therefore, the above analysis predicts that the
local behavior near grazing is described by a map with a
square-root singularity in the latter case or a �3�2�-type
singularity in the former. This agrees perfectly with the
numerics depicted in Figs. 3 and 4.

Example 2.—To illustrate the corner-collision case, we
now take system (3) but suppose that the discontinuity
boundary is now a nonsmooth wedge defined by the zero
sets of H1,2�x� � x 7 �x (as, for instance, in the so-called
trilinear oscillator [1]). In this case, the analysis gives local
dynamics described by a piecewise linear map, which is
indeed confirmed by numerical results [Fig. 4(b)].

In conclusion, many physical systems undergo periodic
behavior which grazes with some discontinuity caused by
a switching or impacting event. We have presented an ana-
lytical framework for modeling such events and hence ex-
plaining the observed dynamical consequences. The key
step is to reduce the dynamics to its essentials: by deriving
normal form maps relying only on assumptions about the
2556
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FIG. 4. Comparison between theory and numerics defined
similarly to Fig. 3 for (a) Eq. (3) near grazing, when the
amplitude of the forcing term is varied across S (k1 � k2 � 2,
z1 � z2 � 0.1, b1 � 1, b2 � 2); (b) for a corner-collision in
the modified Eq. (3) (trilinear oscillator) with k1 � k2 �

p
5,

z1 � z2 � 0.55, b1 � 4.04, b2 � 6.04.

discontinuity at the graze. In so doing, we have provided
the first consistent link between the concepts of grazing
bifurcations in continuous-time systems and border colli-
sions in PWS maps. We have shown that a special case of
“corner-collision” leads to piecewise linear maps, whereas
all other cases lead to maps with either a square-root or a
�3�2�-type singularity as given in Table I. The complete
classification of the dynamics associated with these maps
is the subject of ongoing research.
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