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Zero Temperature Spin Wave Damping in Spin Polarized 3He: Does It Exist?
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Previous spin echo experiments at equilibrium polarizations in 3He-4He mixtures have confirmed the
prediction of zero temperature polarization-induced spin wave damping in Fermi liquids. We have mea-
sured the damping of spin waves in dilute 3He, spin polarized by a 4He circulating dilution refrigerator.
The maximum polarization is almost a factor of 5 higher than the equilibrium polarization in a magnetic
field of 10.54 T at temperatures between 10 and 25 mK. The spin wave damping is much smaller than
expected on the basis of the spin echo experiments and shows that the existence of polarization-induced
spin wave damping is an open question.
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The spin dynamics in weakly polarized Fermi liquids
gives rise to many unusual features and is very well de-
scribed by the Leggett equations [1]. These features, in-
cluding anomalous spin echo behavior (the Leggett-Rice
effect) [2] and spin waves [3], are observable in the col-
lisionless regime where the Landau molecular field ex-
ceeds the inverse of the quasiparticle relaxation time. The
Landau field is proportional to the polarization and, since
the scattering phase space is restricted to a shell of width
kBT around the Fermi surface, the quasiparticle relaxation
time is proportional to 1�T2. We address the problem of
spin dynamics in Fermi liquids at polarizations higher than
those achieved in previous investigations.

A polarized Fermi liquid is characterized by two dif-
ferent Fermi surfaces for the quasiparticles with a spin
parallel or antiparallel to the polarization, but the Leggett
equations have been derived assuming a weak polariza-
tion and therefore only one Fermi surface. Meyerovich has
raised the fundamental point that extension of the Leggett
equations to higher polarization requires the introduction
of a longitudinal and a transverse quasiparticle relaxation
time, tk and t� [4]. The evolution of a gradient in the
magnitude of the spin density is controlled by the longi-
tudinal relaxation time, still proportional to 1�T2. The
decay rate of the transverse component of the spin den-
sity, precessing around the external magnetic field, is gov-
erned by the transverse relaxation time. The transverse
relaxation time remains finite at T � 0 K, because de-
phasing of the transverse component of the spin density
in a field gradient creates quasiparticles in a mixed state
up-down, opening up the whole phase space between the
two Fermi surfaces for scattering. This idea has been pur-
sued in theoretical studies in dense [5] and dilute Fermi
liquids [6]. In the low polarization limit, the transverse re-
laxation time may be parametrized by 1�t� ~ T2 1 T2

a ,
where the anisotropy temperature Ta is proportional to the
polarization [6,7]. The theory for very dilute mixtures
[6] leads in this limit to the expression Ta � h̄gB�2pkB

at equilibrium polarization. In our experimental condi-
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tions Ta�10.54 T� � 2.7 mK, where we will always give
the value of the external field between parentheses.

According to Fomin, this approach does not take into
account that the magnitude of the local spin density is
a conserved quantity and that the local spin density and
the Landau field precess together. If the variations of the
Landau field are slow and have a small amplitude, they
can be treated as an adiabatic perturbation and do not give
rise to scattering. He has derived a spin wave dispersion
relation at T � 0 K, which contains no damping up to
second order in the wave vector [8].

Several spin echo experiments, all at saturated vapor
pressure, confirm that the quasiparticle relaxation time
behaves as 1�t� ~ T2 1 T2

a . An anisotropy tempera-
ture of Ta�8 T� � 16.4 6 2.2 mK has been measured in
pure liquid 3He [9]. Ager et al. have observed a differ-
ence between tk and t� in several 3He-4He mixtures with
Ta�8.8 T� � 19 6 3 mK at a 3He concentration of 6.4%
[10]. Although the experimental anisotropy temperatures
are rather high with respect to theory, these experiments
have been considered a proof in favor of the existence of
zero temperature spin wave damping. The difference be-
tween the experimental results and the prediction of Jeon
and Mullin for the very dilute mixtures is attributed to the
Fermi liquid interactions [7,9,10]. Later experiments have
resulted in lower values for the anisotropy temperature at
higher fields: Ta�11.3 T� � 12 6 2 mK and 13 6 2 mK
for pure 3He [11] and a 6.2% 3He-4He mixture [12]. This
raises the question, why is the ensemble of experimental
results inconsistent with the prediction that Ta is propor-
tional to the polarization?

To approach this problem from a different angle, we
have measured the spin wave damping in a device giving
an enhancement of the polarization by a factor A # 5 with
respect to its equilibrium value (2.6% for the dilute phase
at 7 bars). Consequently, within the context of the theories
predicting zero temperature spin wave damping, any polar-
ization induced spin wave damping should also be ampli-
fied. To make the predicted dependence on the polarization
© 2001 The American Physical Society
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enhancement factor, A, explicit, we write Ta � ATa0 and
1�t� ~ T2 1 A2T2

a0, where Ta0 denotes the anisotropy
temperature for the equilibrium polarization in a magnetic
field, B0.

We also amend the spin wave equation [1] for the polar-
ization enhancement factor, A:

i
≠s1�r, t�

≠t
�

∑
iD�

1 1 ilAvt�

=2 1 gB�r�
∏
s1�r, t� ,

(1)

where s1 is the transverse spin density, D� � y
2
F�1 1

Fa
0 �t��3 is the transverse spin diffusion coefficient, l �

�1 1 Fa
0 �21 2 �1 1 Fa

1 �3�21 accounts for the Fermi liq-
uid interactions, and v�r� � gB�r� corresponds to the
applied magnetic field. This interpretation of Leggett’s
equation is implicit in his derivation of the Leggett-Rice
effect [1].

The experiments have been performed on the dilute
phase in the mixing chamber of a 4He circulating dilu-
tion refrigerator. Diluting 3He into 4He in a magnetic
field at a pressure above 2.6 bars cools and polarizes both
phases in the mixing chamber [13]. Figure 1 shows that
the mixing chamber consists of two cells. When 4He is
injected, the upper cell fills with a saturated 3He-4He mix-
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FIG. 1. Left: the mixing chamber consisting of a dilute and a
concentrated 3He cell. Right: continuous wave NMR spectra in
a field of 10.54 T and a field gradient of 210.6 6 0.5 G�cm.
The left spectrum has been taken without 4He injection, when
the polarization is in equilibrium with the external field. Some
concentrated phase has entered the upper cell and floats on the
dilute phase: the step in the absorption signal at 211 kHz is due
to the magnetization difference between both phases. The right
spectrum, taken a few hours after starting to inject 4He, shows
that the upper cell is now full of dilute phase. The polarization
has grown by a factor A � 3.93 in both cells. We focus on the
spin waves in the region indicated by the dashed arrow. They are
barely visible within the box labeled SW in the right spectrum.
ture. The lower cell remains almost entirely filled with
concentrated —nearly pure—3He, except for dilute phase
droplets falling from the capillary between the two cells.
The dilution process takes place in the lower cell at the
phase boundary of each new droplet before it falls. Both
cells are coupled by the diffusion of heat and polarization
through the capillary. The polarizer does not allow the
polarization and temperature to vary independently. With-
out 4He injection, the polarization of the liquid inside both
cells relaxes to its equilibrium value at a temperature of
about 30 mK. After starting the 4He injection, the polar-
ization increases with a time constant on the order of 1 h
towards its stationary out of equilibrium value. Initially,
both phases in each cell cool and polarize rapidly. Then,
the temperature, measured by vibrating wire viscometers
[13,14] in both cells, rises slowly with the heat production
due to the out of equilibrium polarization. The tempera-
ture increase in the upper cell is more important than in
the lower one; the temperature difference between the two
cells increases from 2 to almost 10 mK.

An NMR coil tuned to a frequency of 344.9 MHz sur-
rounds both cells. The spectrometer allows us either to
obtain the full NMR spectrum by sweeping the frequency
or to zoom in on the spin wave modes by low power pulsed
NMR. The tipping angle is estimated to be less than 1 deg
for a pulse length of 0.4 ms. The polarization enhance-
ment is obtained by normalizing the integral of the absorp-
tion signal from the lower cell to its value at equilibrium.
The absorption signals of the concentrated and dilute phase
vary proportionally, showing that the polarization enhance-
ment in both cells is the same.

The literature describes algorithms to calculate the reso-
nance frequencies and the half-widths of spin wave modes
localized by a field gradient in rectangular [3] and spheri-
cal [15] cells. We will use the one-dimensional solution of
Eq. (1) with one reflecting boundary at z � 0 and a mag-
netic field of the form B�z� � v0�g 1 Gz. The spin wave
modes are given by Airy functions, Ai�2ZN 2 z�gG�1 1

ilAv0t���iD��1�3�, where the ZN�1,2,... are the zeros of
the derivative of Ai�z�. The complex eigenfrequencies,
vN , are

vN 2 v0 � ZN

µ
g2G2iD�

1 1 ilAv0t�

∂1�3

, (2)

or in the limit lAv0t� ¿ 1:

vN 2 v0 � ZN

µ
g2G2D�

lAv0t�

∂1�3µ
1 2

1
3ilAv0t�

∂
. (3)

We write vN 2 v0 � DvN 2 idvN�2, where DvN

is the “mode frequency” and dvN�2 the half-width. In
the limit lAv0t� ¿ 1, the mode frequency is given by
DvN � ZN �g2G2D��lAv0t��1�3 and does not depend
on t� because D� ~ t�. The relation 23�dvN�2��
DvN � 1�lAv0t� allows a determination of lt�.

Higher order magnetic field gradient terms and misalign-
ment of the gradient with respect to a symmetry axis of
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the experimental cell introduce submodes in the spin wave
spectra [3]. The use of a spherical cavity has been success-
fully introduced to be insensitive to misalignments [15].
We have made a hemispherical cavity with a radius of
0.5 mm in the bottom of the upper cell. However, after
careful shimming of the gradients in the x and y direc-
tion, the spin wave modes trapped against the bottom of
the cylindrical cell are much easier to analyze than the
modes that we observe in the cavity. The main features of
the spin wave spectrum in the cylindrical cell are very well
described by Eq. (2) and the submodes are easy to identify.
Therefore, we focus on the modes in the cylindrical cell.

Figure 2 shows the first six main spin wave modes
trapped against the bottom of the cylindrical cell at a
pressure of 7 bars (at least 20 main modes are visible).
The gradient is G � 210.6 6 0.5 G�cm, the average of
G � 211.2 G�cm (from the specification of the gradi-
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FIG. 2. Absorption and dispersion signal of the first 6 spin
wave modes trapped by a field gradient of 210.6 G�cm against
the bottom of the cell filled with dilute 3He. The first mode
(consisting of at least 3 submodes) is shown in the inset at a
103 larger frequency scale. To estimate the half-width of the
modes, we have taken into account that each mode consists of
several submodes due to imperfections in geometry and gradi-
ent: the width of each largest amplitude submode has been de-
termined from the frequency difference between the minimum
and maximum of its dispersion signal. In this way, we obtain
dfN�2 � 1.6 Hz for the first mode.
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ent coil and the measured gradient of the main field) and
G � 210.1 G�cm (from the linewidth and the size of the
mixing chamber).

Data for the spin diffusion coefficient, D�, and the Lan-
dau molecular field parameters, lt�, in dilute saturated
3He are not available at pressures where polarizing by dilu-
tion works. We compare our results with an extrapolation
of low field spin diffusion data at 7 bars [16] to the satura-
tion concentration, xs � 9.3%. We extrapolate D�T2 �
69.5 3 1026 cm2 K2�s and lt�T2 � 1.8 3 10212 s K2

with an estimated error of 10%.
Figure 3 compares the mode frequencies, DfN �

�� fN 2 f0�, and half-widths, dfN�2 � 2�� fN 2 f0�,
from two typical spectra at different ambient temperatures
with Eq. (2) for Ta0�10.54 T� � 0 and 5 mK. The experi-
mental value of the NMR frequency at the cell bottom,
f0, cannot be determined precisely from our NMR data.
Therefore, it is chosen such that Df1 is given by its calcu-
lated value. Then, the experimental and calculated values
of DfN coincide within 2%, showing good agreement
with the extrapolated ratio D��lt� and assuring that we
know lt� indeed to within 10%.
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FIG. 3. Comparison between experimental (�) and calcu-
lated values of the mode frequencies, DfN , and half-widths,
dfN�2, of the spin wave modes for spectra with A � 2.02,
T � 13.3 mK (upper graph) and with A � 3.89, T � 23.9 mK
(lower graph). Input for the calculation is G � 210.6 G�cm,
D�T 2 � 69.5 3 1026 cm2 K2�s, lt�T 2 � 1.8 3 10212 s K2,
Ta0�10.54 T� � 0 mK (1), and Ta0�10.54 T� � 5 mK (3). The
calculated modes are characterized by the relation 23�dfN�2��
DfN � �T2 1 A2T2

a0��1.8 3 10212Av0. The experimental
data in the upper graph is consistent with lAv0t� � 44.5.
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Our main result is the good agreement between
the experimental half-widths and the calculation with
Ta0�10.54 T� � 0 mK. Before discussing the impli-
cations, we recall that the slope �dfN�2��DfN equals
21�3lAv0t�. So, the polarization and temperature
dependence of the calculated modes is described by
23�dfN�2��DfN � �T2 1 A2T2

a0��1.8 3 10212Av0.
To compare the latest Nottingham result —

Ta0�11.3 T� � 13 6 2 mK for a 6.2% mixture at
p � 0 bars [12]—with ours, we scale it for the differ-
ence in magnetic field and polarizability [13] and find
Ta0�10.54 T� � 10 mK instead of 0 mK. The vertical
axes in Fig. 3 have to be expanded by a factor of 5–6 to
show all modes calculated with Ta0�10.54 T� � 10 mK.
We dismiss three explanations for this discrepancy:
(1) Fermi liquid interactions may enhance Ta0 [7,9] and
possibly in a pressure dependent way. In view of the
weak pressure dependence of the known Fermi liquid
parameters in dilute 3He, we consider it unlikely that such
a large discrepancy may be explained by the pressure
difference. (2) The results of the spin echo experiments
may differ, because they have been obtained at equilib-
rium polarizations [12]. We point out that after the p

pulse (50% of the duration of a spin echo experiment) the
polarization is inverted and far from equilibrium. (3) The
dipolar field gives rise to magnetostatic modes in pure
3He [11,17] and may affect the spin wave spectrum in
dilute 3He. Inclusion of the dipolar field in the calculation
of spin wave spectra in a sphere results in changes that
are barely visible for our sample [18]. We expect that
the effect of the dipolar field is also negligible in our
geometry.

The data for dfN�2 look smaller than calculated using
Ta0�10.54 T� � 2.7 mK, the prediction of the dilute Fermi
gas model [6], and indicated by the dashed line in the lower
graph in Fig. 3. However, a possible decrease of 10% in
temperature or an unlikely increase of 20% in lt� would
resolve the discrepancy with this model.

In conclusion, our results on spin wave damping in dilute
3He disagree significantly with previous results from spin
echo experiments. Ours agree with Fomin’s prediction that
polarization induced spin wave damping does not exist. In
the present experiment, our errors are still too large to to-
tally rule out the dilute Fermi gas model, however. To
further test the existence of zero temperature polarization
induced spin wave damping, experiments at higher polar-
izations and lower temperatures are needed.
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