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Master Equation for Retrodiction of Quantum Communication Signals
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We derive the master equation that governs the evolution of the measured state backwards in time in
an open system. This allows us to determine probabilities for a given set of preparation events from the
results of subsequent measurements, which has particular relevance to quantum communication.
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The retrodictive formalism of quantum mechanics has
been studied for some time, but until recently it has been
mainly an interesting philosophical concept associated
with the problem of time asymmetry in quantum mechan-
ics [1]. With the recent rapid development and interest in
quantum communications [2], including quantum cryp-
tography [3], however, retrodictive quantum mechanics
will become increasingly important [4]. The essential
communication problem is to determine the message
sent from the signal received [5]. The basic quantum
communication problem is as follows. A quantum system
is prepared in some state by Alice and sent to Bob. Bob
must retrodict from the output of his measurement or
detection device the signal state selected by Alice. For
this, he needs to be able to calculate, on the basis of a
single detection event, the probability that Alice prepared
any particular state from a set of known possible states.
This problem can be solved using the predictive formalism
of quantum mechanics combined with Bayes’ theorem
[6], which relates predictive and retrodictive conditional
probabilities. Thus, the probability that a particular
preparation event i occurred given that a measurement
provides the event j is

P�i j j� �
P� j j i�P�i�

P� j�
�

P� j j i�P�i�P
i

P� j j i�P�i�
. (1)

The retrodictive formalism, however, provides a more di-
rect and natural approach. For closed systems, in which the
evolution of the quantum state is unitary between prepara-
tion and measurement, the intrinsic time symmetry simpli-
fies the problem significantly. Open systems, on the other
hand, in which the quantum system of interest interacts
with a large environment into which information is irre-
trievably lost, provide a more realistic model of practical
situations. For these systems, the simplifying assumption
of time symmetry is no longer applicable. We have shown
elsewhere [7,8] how one can exploit Bayes’ theorem in
conjunction with the solution of a predictive master equa-
tion to address the problem of retrodiction in open systems.
In this paper, we derive a general retrodictive master equa-
tion that can be applied directly to the basic quantum com-
munication problem described above.
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We can represent the quantum measuring, or detecting,
device mathematically by means of a probability operator
measure (POM) with elements P̂j which sum to the unit
operator [9]. The expectation values of these elements are
the probabilities for the corresponding possible measure-
ment outcomes j. In the predictive picture of quantum
mechanics, for a closed system prepared by Alice at time
tp in state r̂

pred
i �tp�, the predictive conditional probability

of Bob obtaining the measurement outcome j at the later
measurement time tm is

P� j j i� � Tr�Û�tm, tp�r̂pred
i �tp�Ûy�tm, tp�P̂j�

� Tr�r̂pred
i �tm�P̂j� , (2)

where Û�tm, tp� is the evolution operator from tp to tm.
We note here that, if we write the evolution operator
as the product of two separate operators, Û�tm, tp� �
Û�tm, t�Û�t, tp� for any time t between preparation and
measurement, and use the cyclic property of the trace, the
predictive conditional probability can be written as

P� j j i� � Tr�r̂pred
i �t�P̂j�t�� . (3)

Here, P̂j�t� is the measurement POM element evolved
backwards in time from tm to the intermediate time t.
The conditional probability is independent of this inter-
mediate time.

In this paper, we are interested in the more difficult,
but more practical, case of an open system. Here, the
simple time symmetry inherent in the unitary evolution no
longer applies. This is because, in both the predictive and
retrodictive formalisms, the initial state of the environment
is known and the measurement provides no information
about the final environment state. We can treat the problem
as that of a closed system comprising the environment E
and the system of interest S as subsystems. We write the
POM element for outcome j of a measurement on S as
P̂j,S . The environment POM elements must sum to 1̂E ,
the unit operator on the state space of E. As more than one
possible outcome of a measurement on E would provide
some information about the environment, the environment
POM element must be 1̂E . The POM elements P̂j for
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the closed system, of system plus environment, are thus
1̂E ≠ P̂j,S . The predictive conditional probability for Bob

to obtain the outcome j if Alice prepares the state r̂
pred
i �tp�

is then

P� j j i� � TrES�Û�tm, tp�r̂pred
E �tp�

≠ r̂
pred
i,S �tp�Ûy�tm, tp�1̂E ≠ P̂j,S� , (4)

where Û�tm, tp� is the evolution operator for the total sys-
tem and environment combined. This equation can also be
written in terms of a general intermediate time t as

P� j j i� � TrES�Û�t, tp�r̂pred
E �tp� ≠ r̂

pred
i,S �tp�Ûy�t, tp�

3 Ûy�tm, t�1̂E ≠ P̂j,SÛ�tm, t�� . (5)

The standard predictive master equation approximation is
that the environment has a large number of degrees of
freedom and is little changed by the coupling to S, that
is [10],

Û�t, tp�r̂pred
E �tp� ≠ r̂

pred
i,S �tp�Ûy�t, tp�

� r̂
pred
E �tp� ≠ r̂

pred
i,S �t� , (6)

where
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r̂
pred
i,S �t� � TrE�Û�t, tp�r̂pred

E �tp� ≠ r̂
pred
i,S �tp�Ûy�t, tp��

(7)

is the reduced predictive density operator for the system S
[10]. We use this to write Eq. (5) as

P� j j i� � TrS�r̂pred
i,S �t�P̂j,S�t�� , (8)

where

P̂j,S�t� � TrE�r̂pred
E �tp� ≠ Ûy�tm, t�P̂j,SÛ�tm, t�� . (9)

As is the case for closed systems, the probability P� j j i� in
Eq. (5) is independent of t, provided we choose it some-
where between tp and tm, so �P� j j i� its time derivative
with respect to t, is zero. Thus, from (8),

TrS�r̂pred
i,S �t� �̂

Pj,S�t�� � 2TrS� �̂r
pred
i,S �t�P̂j,S�t�� . (10)

We now consider the general predictive Markovian master
equation for r̂

pred
i,S �t� in the standard Lindblad form [11],

�̂r
pred
i,S �t� � 2ih̄21�ĤS , r̂

pred
i,S �t��

1
X

q
�2Âqr̂

pred
i,S �t�Ây

q 2 Ây
qÂqr̂

pred
i,S �t�

2 r̂
pred
i,S �t�Ây

qÂq� , (11)

where ĤS is the Hamiltonian for the system without the
environment, and Âq is a system operator. We find, upon
using the cyclic property of the trace,
TrS�r̂pred
i,S �t� �̂

Pj,S�t�� � TrS���r̂pred
i,S �t� �2ih̄21�ĤS , P̂j�t��

2
X

q
�2Ây

qP̂j,S�t�Âq 2 P̂j,S�t�Ây
qÂq 2 Ây

q ÂqP̂j,S�t������ . (12)
This is true for all r̂
pred
i,S �t�, so the evolution equation for

the POM element is

�̂
Pj,S�t� � 2ih̄21�ĤS , P̂j,S�t��

2
X

q
�2Ây

qP̂j,S�t�Âq 2 P̂j,S�t�Ây
q Âq

2 Ây
qÂqP̂j.S�t�� . (13)

We note that the evolution of �̂
Pj,S�t� is always backwards

in time, that is, Eq. (13) holds only for times t # tm. The

derivative of �̂
Pj,S�t� with respect to the premeasurement

time, defined as t � tm 2 t, is the negative of Eq. (13).
The retrodictive formalism is most useful for calculat-

ing retrodictive conditional probabilities P�i j j� rather than
predictive probabilities P� j j i�. These can be related us-
ing Bayes’ theorem, so from Eqs. (1) and (8),

P�i j j� �
TrS�r̂pred

i,S �t�P̂j,S�t��P�i�
P

i TrS�r̂pred
i,S �t�P̂j,S�t��P�i�

�
TrS�r̂retr

j,S �t�L̂i,S�t��
P

i TrS�r̂retr
j,S �t�L̂i,S�t��

, (14)
where

rretr
j,S �

P̂j,S�t�
TrS�P̂j,S�t��

(15)

is the retrodictive density operator describing the system
at time t, which has been evolved backwards in time from
the measurement time, and

L̂i,S�t� � P�i�r̂pred
i,S �t� (16)

is the preparation device operator L̂i�tp� evolved for-
wards from the preparation time. Each preparation device
operator is the product of the density operator representing
the associated output state in the predictive formalism
and the a priori probability of it occurring. The sum of
the operators L̂i�tp� is thus the a priori density operator
that Bob would ascribe to the system in the predictive
formalism immediately after preparation in the absence
of any knowledge of the selection made by Alice or the
result of his measurement [7].

We can now substitute Eq. (13) into the time derivative
of Eq. (15) to obtain eventually
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�̂r
retr
j,S �t� � 2ih̄21�ĤS , r̂retr

j,S �t�� 2
X

q
�2Ây

q r̂retr
j,S �t�Âq 2 r̂retr

j,S �t�Ây
qÂq 2 Ây

qÂqr̂retr
j,S �t�� 2 2r̂retr

j,S �t� TrS�r̂retr
j,S �t�

X

q
�Ây

q , Âq��

(17)
as the desired master equation.
It is easy to show that Eq. (17) preserves the trace of

r̂
retr
j,S �t�. It is also possible to show that r̂

retr
j,S �t� is a non-

negative definite operator for any time t between tp and
tm, provided P̂j,S�t� is non-negative definite, as it must be
in order to be a POM element. A detailed proof of this
will be given elsewhere. This proves that the master equa-
tion is a physical one. One consequence of this is that
the non-negativity of P̂j,S�t�, combined with the fact that
the sum of P̂j,S�t� is the unit operator [12], ensures that the
P̂j,S�t� are also the elements of a POM. Thus, a projection
of a state of S onto P̂j,S�t� formally represents a measure-
ment of S. This allows the interpretation of the projection
in Eqs. (8) and (3) as a measurement, and thus a collapse,
taking place at any time t between tp and tm. The predic-
tive prepared state evolves continuously until the collapse
time and the POM element P̂j,S�t� evolves back continu-
ously until the collapse time. The physical interpretation
of �P� j j i� � 0 is, therefore, that measurable probabilities
are independent of when we choose the collapse time, un-
derlining the somewhat arbitrary nature of the concept.

As a specific simple example of a retrodictive master
equation, we look at the case of Alice sending to Bob a
decohering qubit in the form of a two-level atom under-
going spontaneous emission into the environmental vac-
uum with decay from state je	 to jg	. For convenience,
we write r̂

retr
j,S �t� � r̂ and work in terms of the premea-

surement time t, defined earlier as tm 2 t. We find the
retrodictive master equation,

dr̂�dt � g�je	 
ejrgg 2 r̂je	 
ej�2

2 je	 
ejr̂�2 1 r̂�ree 2 rgg�� , (18)

where g is the decay constant. Suppose Bob detects
the atom to be in the superposition state j1	 � �je	 1

jg	��
p

2. Here, we solve (18) with r̂ at t � 0 equal to
the POM element P̂j,S � j1	 
1j and obtain

r̂�t� � �1 1 �je	 
gj 1 jg	 
ej� exp�2gt�2���2 . (19)

If we know that Alice prepares the atom in state j1	 and
its orthogonal state j2	 with equal probabilities, then the
preparation device operator L̂1,S corresponding to j1	 is
just j1	 
1j�2 and L̂2,s � j2	 
2j�2. Substitution into
(4) gives the probability that Alice prepared state j1	 at
time tp as �1 1 exp�2g�tm 2 tp��2���2. For short pre-
measurement times, this is unity and, for very long times,
it tends to 1

2 , the a priori value in the absence of any mea-
surement information. These results are precisely in accord
with what we have found recently by a more direct appeal
to Bayes’ theorem [8]. We should note here that, while
solving the master equation (17) is straightforward in this
case, for more complicated examples it may be easier to
solve the corresponding retrodictive equation (13) for the
POM element, and then normalize the solution by means
of Eq. (15) to find the retrodictive density matrix. Also, in
general, Eq. (17) will be nonlinear, while Eq. (13) will be
linear, so Eq. (13) might be regarded as the more useful
formulation of retrodictive evolution.

In conclusion, we have examined the basic problem of
quantum communication for an open system, that is, to
retrodict the quantum state sent by Alice on the basis of
a single measurement made by Bob. The time symmetry
inherent in closed systems is not applicable, because of ir-
reversible loss of information into the environment. Our
approach has been to find a quite general master equa-
tion for the retrodictive density operator, enabling us to
determine this operator at the time of state preparation.
Projection onto the appropriate preparation device opera-
tor then allows us to find the probability that a particu-
lar state was prepared by Alice. We emphasize again that
the retrodictive formalism is entirely consistent with the
more usual predictive formalism of quantum mechanics
combined with inference based on Bayes’ theorem, but the
retrodictive master equation in this paper provides a more
direct and natural approach to the quantum communica-
tion problem.
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