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Superconductivity in Ropes of Single-Walled Carbon Nanotubes
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We report measurements on ropes of single-walled carbon nanotubes (SWNT) in low-resistance contact
to nonsuperconducting (normal) metallic pads, at low voltage and at temperatures down to 70 mK. In
one sample, we find a 2 orders of magnitude resistance drop below 0.55 K, which is destroyed by a
magnetic field of the order of 1 T, or by a dc current greater than 2.5 wA. These features strongly
suggest the existence of superconductivity in ropes of SWNT.
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Metallic carbon nanotubes are known to be model sys-
tems for the study of 1D electronic transport [1-3]. Elec-
tronic correlations are expected to lead to a breakdown of
the Fermi liquid state. Nanotubes should then be described
by Luttinger Liquid (LL) theories [4,5], with collective low
energy excitations and no long range order. Proof of the
validity of LL description in ropes was given by the mea-
surement of a resistance diverging as a power law with
temperature down to 10 K [6]. Howeyver, this measurement
was done on nanotubes separated from measuring leads by
tunnel junctions. Because of Coulomb blockade [7], the
low temperature and voltage regime were not explored. In
contrast, we have developed a technique in which mea-
suring pads are connected through low contact resistance
to suspended nanotubes [8]. We previously showed that
when the contact pads are superconducting, a large super-
current can flow through nanotubes [9]. In this letter, we
report experimental evidence of intrinsinc superconductiv-
ity below 0.55 K in ropes of carbon nanotubes connected
to normal contacts.

The samples are ropes of single-walled carbon nano-
tubes (SWNT) suspended between normal metal contacts
(Pt/Au bilayers). The SWNT are prepared by an electri-
cal arc method with a mixture of nickel and yttrium as a
catalyst [10,11]. SWNT with diameters of the order of
1.4 nm are obtained. They are purified by the cross-flow
filtration method [11]. The tubes are usually assembled
in ropes of a few hundred parallel tubes. Isolation of an
individual rope and connection to measuring pads are per-
formed according to the procedure we previously used [8],
where ropes are soldered to melted contacts. The contact
resistance is low and the tubes can be structurally char-
acterized with a transmission electron microscope (TEM).
For the three samples presented here, the contacts were tri-
layers of sputtered Al,O3/Pt/Au of respective thicknesses
5, 3, and 200 nm. This procedure ensures that the tubes do
not contain any chemical dopants such as alkalis or halo-
gens. The contacts showed no sign of superconductivity
down to 50 mK. The samples were measured in a dilution
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FIG. 1. Resistance as a function of temperature for the three
samples. The length L, number of tubes N, and room tempera-
ture resistance R of each sample are given in the corresponding
panel. (a) Sample Pt3. (b) Resistance of Pt in applied magnetic
fields of woH = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8,
and 1 T from bottom to top. The inset is a zoom of the low tem-
perature region. (c) Resistance of Pt2 at uoH = 0, 0.05, 0.1,
0.2, 04, 0.6, 0.8, 1, 1.25, 1.5, 1.75, 2, and 2.5 T from bottom
to top. Inset: TEM micrograph of sample Pt2, from which we
deduce L, and N,. N, is estimated from the measured diameter
D>, through N, = [D,/(d + e)]?, where d is the diameter of a
single tube (d = 1.4 nm), and e is the typical distance between
tubes in a rope (¢ = 0.2 nm). The dark spot is a Ni/Y catalyst
particle.
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refrigerator, at temperatures ranging from 1 to 0.05 K,
through filtered lines [12]. Magnetic fields up to 5 T could
be applied perpendicularly to the contacts and the tubes.
The resistance was measured by applying a small (1 to
10 nA, 30 Hz) ac current though the sample and measur-
ing the ac voltage using lock-in detection.

We select samples with a room temperature (RT) resis-
tance less than 10 k{). As is generally observed, we find
that the resistance increases as the temperature is lowered
between 300 and 1 K. Things change, however, below
1 K, as shown in Fig. 1 for the three samples Ptl, Pt2,
and Pt3, measured in magnetic fields ranging from 0 to
2.5 T. At zero field, the zero-bias resistance of Pt3 in-
creases as T is reduced, whereas the resistances of Pt1 and
Pt2 decrease drastically below 7|" = 140 mK for Ptl and
T, = 550 mK for Pt2. The resistance of Ptl is reduced by
30% at 70 mK. That of Pt2 decreases by more than 2 or-
ders of magnitude, and saturates below 100 mK at a value
R, = 74 (). We define a transition temperature Tc, by the
inflection point of R(T). T¢, is 370 mK at zero field, de-
creases at higher magnetic fields, and extrapolates to zero
at 1.35 T (Fig. 4c below). At fields above 1.25 T, the re-
sistance increases with decreasing temperature, similar to
Pt3, and becomes independent of magnetic field. The re-
sistance of Ptl follows qualitatively the same trend, but the
full transition does not occur down to 70 mK. Figures 2
and 3 show that, in the temperature and field range where
the zero-bias resistance drops, the differential resistance is
strongly bias dependent, with lower resistance at low bias.
These data suggest that the rope Pt2 (and, to a lesser ex-
tent, Ptl) is intrinsically superconducting. Although the
experimental data of Pt2 seem similar to those of SWNT
connected to superconducting contacts [9], there are major
differences. In particular the V(I), dV /dI(I) do not show
any supercurrent because of the existence of a finite resid-
ual resistance.

We now analyze the superconductivity in these systems,
taking into account several features: the large normal con-
tacts, the coupling between tubes within the rope, the 1D
character of each tube, and their finite length compared
to relevant mesoscopic and superconducting scales. The
resistance of any superconducting wire measured through
normal contacts [a normal-superconductor-normal (NSN)
junction] cannot be zero because the number of channels
in the wire is much smaller than in the contacts [13]: a
metallic SWNT, with 2 conducting channels, has a contact
resistance of half the resistance quantum, Ry /2 [where
Rp = h/(2¢*) = 12.9 kQ], even if it is superconduct-
ing. A rope of N,, parallel metallic SWNT will have a
minimum resistance of Ry/(2N,,). Therefore we use the
residual resistance R, = 74 ) of Pt2 to deduce that Pt2
has at least N,, = RQ/ZR, = 90 metallic tubes. This is
approximately one-fourth of the number of tubes in the
rope, measured by TEM (Fig. 1c). Similarly, Ry is also
the maximum resistance of any phase coherent metallic
wire [14]. As a consequence, the high value (9.2 k{})
of the resistance at 1 K [which corresponds to an av-
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FIG. 2. Differential resistance as a function of current for
samples Ptl and Pt2, in different applied fields. (a) Sample
Ptl. Fields are 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, and 1 T.
(b) Sample Pt2. Fields are 0, 0.2, 0.4, 0.6, 0.8, 1, 1.25, 1.5,
1.75, 2, and 2.5 T.

erage resistance per metallic tube of (9.2 k{)) X N, =
830 k) = 130R] cannot be understood if the nanotubes
are independent, unless considering a very short (unphysi-
cal) phase coherence length L,(1 K) = L/130 = 8 nm.
On the other hand, if the electrons are free to move from
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FIG. 3. (a) Differential resistance of Pt2 vs current for a larger
current amplitude than in Fig. 2, at different temperatures.

Curves are offset vertically for clarity. (b) V(I) and Z—‘I/(I)
curves showing the hysteretic behavior in V(I) at each point in

the ‘Z—‘I/(I) curve.
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tube to tube [15], the resistance is simply explained by
the presence of disorder. The mean-free path is deduced
from the RT resistance R, = 4.1 k) through [16] I, =
R%f,—i =~ 18 nm. We conclude that Pt2 is a diffusive con-
ductor with a few hundred conduction channels.

With such a small number of channels, we expect the
superconductivity to differ from 3D superconductivity.
In particular, we expect to observe a broad resistance
drop starting at the 3D transition temperature 7° [17]
and going eventually to R, at zero temperature. This
is what is observed in Pt2 (see Fig. 1c). We estimate
the gap through the Bardeen-Cooper-Schrieffer relation
A = 1.76kpT*: A = 85 ueV for Pt2. We can then

deduce the superconducting coherence length along the
ﬂﬁvflez/A =~ 0.3 Mmm,
where vy is the longitudinal Fermi velocity 8 X 10° m/s
[18]. Consistent with 1D superconductivity, &, is 10 times
larger than the diameter of the rope.

Finally, reminiscent of measurements of narrow su-
perconducting metal wires [17], we find jumps in the
differential resistance as the current is increased (Figs. 2
and 3). For Pt2 the differential resistance at low currents
remains equal to R, up to 50 nA, where it strongly rises
but does not recover its normal state value until 2.5 uA
(Fig. 3a). The jump in resistance at the first step cor-
responds approximately to the normal state resistance
of a length & of Pt2. [Each peak corresponds to a
hysteretic feature in the V-I curve (Fig. 3b). Above
1 T the differential resistance is peaked at zero current.
This is also the case for Pt3 (data not shown). The
variations of the differential resistance of Ptl are similar
to those of Pt2 close to its transition temperature. These
jumps are identified as phase slips [17,19,20], which
are the occurrences of normal regions located around
defects in the sample. Such phase slips can be thermally
activated (TAPS), leading to an exponential decrease of
the resistance instead of a sharp transition, in qualitative
agreement with our experimental observation (Fig. 4a).
At a sufficiently low temperature, TAPS are replaced
by quantum phase slips (QPS), which, when tunneling
through the sample, contribute an additional resistance
to the zero temperature resistance. Moreover, QPS are
predicted to suppress the transition when the normal state
resistance of the sample on the phase coherence scale is
larger than Ry /2 [21] (as confirmed by recent experiments
[22]). Our data on Pt2 show no evidence of such an effect,
even though the normal state resistance, measured above
T*, is 40% larger than Rp/2. The current above which
the jumps disappear, 2.5 pA, is close to the critical
current Ic = A/R,e = 1 uA of a superconducting wire
without disorder and with the same number of conduct-
ing channels [20]. This large value of critical current
would also be the maximum supercurrent in a structure
with this same wire placed between superconducting
contacts (with gap Ag), and is much larger than the
Ambegaokar-Baratoff prediction RyIc = Ag/e. This
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FIG. 4. (a) Resistance of Pt2 plotted on a log scale as a func-

tion of the inverse temperature at H = 0. We have subtracted
the low temperature residual resistance (contact resistance).
The slope yields an approximation activation energy of 0.8 K.
(b) Magnetoresistance of Pt2 at 50 mK. We define the critical
field as the inflection point of R(H): woHc(T = 50 mK) =
1.1 T. (c) Transition line of Pt2 defined in the H, T plane by
the inflection point of R(T) or, equivalently, by the inflection
point of R(H). (d) Field dependence of the critical current of
Pt2 defined as the current at which the first resistance jump
occurs in the dV /dI curves of Fig. 2. I¢(H) extrapolates to a
critical field of 1.2 T, in agreement with the linear extrapolation
1.3 T of Tc(H).

might explain the anomalously large supercurrent mea-
sured in a previous experiment [9], where nanotubes were
connected to superconducting contacts.

We now discuss the effect of the magnetic field. The
field at which the resistance saturates to its normal value
and at which the critical current vanishes, 1.25 T, coin-
cides with the field obtained by extrapolation of T¢(H)
to zero temperature (Fig. 4b). It is difficult to say what
causes the disappearance of superconductivity. The value
of Hc(0) should be compared to the depairing field in a
confined geometry [23], and corresponds to a flux quantum
@, through a length ¢ of an individual SWNT of diame-
ter d, woHe = ®o/(2/mdé) = 1.35 T. But Hc(0) is
also close to the field woH, = A/up = 1.43 T at which
a paramagnetic state becomes more favorable than the su-
perconducting state [24,25]. Note that this value is of
the same order as the critical field that was measured on
SWNT connected between superconducting contacts, i.e.,
much higher than the critical field of the contacts.

We now estimate the superconducting coherence length
of the two other samples, to explain the extent or ab-
sence of observed transition. Indeed, investigation of the
proximity effect at high-transparency NS interfaces has
shown that superconductivity resists the presence of nor-
mal contacts only if the length of the superconductor is
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much greater than & [26], i.e., if the wire contains a su-
perconducting reservoir. This condition is nearly fulfilled
in P2 (&, = L,/3). By using the high temperature resis-
tance values of Ptl and Pt3, and by assuming a gap A
and a number of metallic tubes equal to those of Pt2,
we find €] = L,/2 and &; = 2L;3. These values explain
qualitatively a reduced transition temperature for Pt1 and
the absence of a transition for Pt3. Moreover we can ar-
gue that the superconducting transitions we see are not due
to a hidden proximity effect: if the Al;O3/Pt/Au contacts
were made superconducting by the laser pulse, the short-
est nanotube (Pt3) would become superconducting at tem-
peratures higher than the longer tubes (Ptl and Pt2). The
main result, i.e., no visible transition with a short rope,
and a visible transition with a long rope, are confirmed
by measurements on two other samples which are not
presented here.

We now consider the possible mechanism of supercon-
ductivity. It has been suggested that coupling with low en-
ergy phonons can turn repulsive interactions in a Luttinger
liquid into attractive ones and drive the system towards
a superconducting phase [27]. Such low energy phonons
have been experimentally observed in the form of mechani-
cal bending modes of a suspended SWNT rope [28]. It was
also shown that superconducting fluctuations can dominate
at low temperature in ladders such as tubes [4]. In this
case the system must be away from half-filling, a condi-
tion probably fulfilled in our experimental situation, due to
hole doping from the contacts [29,30]. Finally, the super-
conductivity reported here recalls that of graphite interca-
lated with alkalis (Cs, K), which also occurs between 0.2
and 0.5 K [31]. Much higher temperatures were observed
in alkali doped fullerenes [32] because of the coupling to
higher energy phonons. This suggests the possibility of in-
creasing the transition temperature by chemically doping
the nanotubes.

We have shown that ropes of carbon nanotubes are in-
trinsically superconducting. This is the first observation of
superconductivity in a system with such a small number
of conduction channels. The understanding of this super-
conductivity calls for future experimental and theoretical
work and motivates in particular a search of superconduct-
ing fluctuations in a single SWNT.
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