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by a Many-Electron Mössbauer-Type Recoil in a Magnetic Field
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We consider the effect of electron correlations on tunneling from a 2D electron layer in a magnetic
field parallel to the layer. A tunneling electron can exchange its momentum with other electrons, which
leads to an exponential increase of the tunneling rate compared to the single-electron approximation.
The effect depends on the interrelation between the dynamics of tunneling and momentum exchange.
The results explain and provide a no-parameter fit to the data on electrons on helium. We also discuss
tunneling in semiconductor heterostructures.
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Low density two-dimensional electron systems (2DESs)
in semiconductor heterostructures and on liquid helium
are among the most ideal many-electron systems. Such
systems display strong effects of the electron-electron in-
teraction, including those specifically related to electron
correlations [1,2]. They show up dramatically in various
unusual transport properties. One of the most broadly used
techniques for investigating many-electron effects is tun-
neling [3], a recent example being the observation [4] of
the giant increase of interlayer tunneling in double-layer
heterostructures, apparently related to the onset of inter-
layer correlations.

For electrons on helium, an exponentially strong devia-
tion from the single-electron rate of tunneling transverse
to a magnetic field has been known experimentally since
1993 [5], but remained unexplained. Such a field couples
the tunneling motion away from the 2DES to the in-plane
degrees of freedom. The effect of the field and the role
of electron correlations cannot be described by a simple
phenomenological tunneling Hamiltonian.

In this paper we provide a theory of tunneling from a
correlated 2DES in a magnetic field B parallel to the elec-
tron layer. We show, using the model of a Wigner crystal
(WC), that the tunneling is affected by the interelectron
momentum exchange and its dynamics, which is largely
determined by short-range order. We discuss tunneling
from 2DESs on helium and in single quantum well het-
erostructures. The results explain and give a no-parameter
fit to the experimental data [5], see Fig. 1. They suggest
new types of experiments which involve tunneling through
broad barriers and will be sensitive to short-range order in
a 2DES.

Electron correlations change the tunneling rate by ef-
fectively decreasing the single-electron magnetic barrier.
This barrier emerges because, when an electron tunnels
from the layer (in the z direction), it acquires an in-plane
Hall velocity yH � vcz in the B 3 ẑ direction and the
corresponding in-plane kinetic energy mv2

cz2�2, where
vc � eB�mc is the cyclotron frequency. Respectively, the
0031-9007�01�86(11)�2408(4)$15.00
energy for motion along the z axis is decreased, or the tun-
neling barrier is increased by mv2

cz2�2.
In a correlated 2DES, the tunneling electron exchanges

its Hall momentum with other electrons, thus decreasing
the energy loss [6]. This is somewhat similar to the Möss-
bauer effect, where the momentum of a gamma quantum is
given to the crystal as a whole [7]. In our case, the effect
is very sensitive to the electron dynamics. If the rate of the
interelectron momentum exchange vp exceeds the recip-
rocal duration of underbarrier motion in imaginary time
t

21
f and vc, then in-plane velocities of all electrons are

nearly the same, and the Hall velocity is yH ~ 1�N ! 0
(N is the number of electrons). In this adiabatic limit the
effect of the magnetic field on tunneling is fully compen-
sated. For vptf � 1 a part of the tunneling energy goes

FIG. 1. The rate of electron tunneling from helium surface
W�B� as a function of the magnetic field B for the electron
density n � 0.8 3 108 cm22 and the calculated pulling field
§� � 24.7 V�cm (solid curve). Diamonds show the experimen-
tal data [5]. The error bars correspond to the uncertainty of the
experimental parameters. The dotted curve is the calculation
[5] for T � 0.04 K without interelectron momentum exchange.
Inset: comparison of the present theory for B � 0 with the ex-
perimentally measured density dependence of the tunneling rate.
© 2001 The American Physical Society
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to WC phonons, yet the B-induced suppression of tunnel-
ing is largely reduced.

In a strongly correlated system, where the electron wave
functions overlap only weakly, one can “identify” the tun-
neling electron. Its out-of-plane motion for B � 0 is de-
scribed by the Hamiltonian

H0 �
p2

z

2m
1 U�z� . (1)

The potential U�z� has a well in which the electron occu-
pies the ground state, with energy Eg. The well is sepa-
rated by a tunneling barrier from extended states with a
quasicontinuous spectrum, cf. Fig. 2(b). We assume that
the tunneling length L is much less than the average in-
terelectron distance �n21�2, where n is the electron den-
sity. Then small-amplitude in-plane electron vibrations
about lattice sites are only weakly coupled to tunneling
for B � 0 [8]. We neglect this coupling.

A magnetic field parallel to the electron layer mixes up
the in-plane and out-of-plane motions. The Hamiltonian
of the tunneling electron and phonons of the WC is H �
H0 1 Hy 1 HB with

Hy �
1
2

X
k,j

�m21pkjp2kj 1 mv2
kjukju2kj� (2)

and

HB �
1
2

mv2
cz2 2 vczN21�2

X
k,j

�B̂ 3 pkj�z . (3)

Here, pkj , ukj , and vkj are the momenta, displacements,
and frequencies of the normal modes of the 2D Wigner
crystal with the wave vector k, respectively � j � 1, 2�.
We assumed that the equilibrium in-plane position of the
tunneling electron is at the origin. Then its in-plane mo-
mentum is p � N21�2

P
pkj .

The Hamiltonian HB couples the out-of-plane motion to
lattice vibrations. The problem of many-electron tunneling
is thus mapped onto a familiar problem of a particle cou-
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FIG. 2. Relative rate of tunneling W̄ � W�B��W �0� vs mag-
netic field for a 2D WC in a semiconductor heterostructure, with
vt0 � 0.5. Inset (a): the tunneling exponent R vs n �

p
2 vt0

for vct0 � 1.0 (solid line) and B � 0 (dashed line). Inset (b):
the tunneling potential with (bold line) and without (thin line)
barrier reduction due to static electron correlations.
pled to a bath of harmonic oscillators [9,10], with the cou-
pling strength controlled by the magnetic field. However,
there are two distinctions from the standard formulation.
First, the coupling mixes together the particle coordinate
z and the momenta of the lattice. These two quantities have
different symmetry with respect to time inversion. Because
of broken time-reversal symmetry, the general problem of
tunneling in a 3D potential in a magnetic field requires a
special approach, which was developed earlier for an iso-
lated particle [11]. For the present model, the problem is
simplified by the fact that in-plane motion is harmonic vi-
brations and the coupling is independent of ukj [10].

The second distinction arises because, for 2DES, the
potential well U�z� is strongly nonparabolic near the mini-
mum (cf. Fig. 2). As a result, the standard instanton tech-
nique [12] does not apply [13].

We will evaluate the tunneling rate in the WKB approxi-
mation. In the presence of a magnetic field it is convenient
to look for the WKB wave function under and behind the
barrier in the momentum representation with respect to
phonon variables,

c�z, �pkj�� � exp�iS�z, �pkj���, h̄ � 1 , (4)

and make a canonical transformation so that pkj and 2ukj

become new canonical coordinates and momenta.
To the lowest order in h̄, the action S in (4) can be ob-

tained from the Hamiltonian equations for the trajectories
of the system,

�S � pz �z 2
X
kj

ukj �pkj , �z �
≠H
≠pz

, �pz � 2
≠H
≠z

,

�ukj �
≠H

≠pkj
, �pkj � 2

≠H
≠ukj

.
(5)

In the �z, �pkj�� representation, the Hamiltonian equa-
tions (5) have time-reversal symmetry. This allows us to
solve them under the barrier in a standard way [12] by
keeping the coordinates z, pkj real and making the mo-
menta pz , 2ukj , time t � 2it, and action S�z, �pkj�� �
iSE�z, �pkj�� purely imaginary.

The Euclidean action SE�t� as a function of time is
evaluated along a multidimensional trajectory (5) that goes
under the barrier from the potential well to the boundary
of the region which is classically allowed to both the tun-
neling electron and the WC vibrations. At this boundary,
one has to match the underbarrier solution (with imaginary
momenta) with the WKB solution behind the barrier (with
real momenta). Therefore, for smooth U�z�,

pz�tf� � 0, ukj�tf� � 0 , (6)

where tf is the imaginary time at which the boundary is
reached.

We now discuss the initial conditions for the trajecto-
ries (5). Typically, the characteristic intrawell localization
length 1�g in the potential U�z� is small compared to the
tunneling length L. For large gL ¿ 1, the magnetic field
may have a strong cumulative effect on the tunneling rate,
even where it only weakly perturbs the intrawell motion.
2409
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Inside the well, and close to it, the electron in-plane and
out-of-plane motions are then separated. We can set initial
conditions at an arbitrary plane z � z0 close to the well,
yet deep enough under the barrier so that the wave func-
tion c�z, �pkj�� is semiclassical. For a harmonic WC, the
dependence of c on pkj is Gaussian. Then from (4)

SE�0� �
X
kj

pkj�0�p2kj�0��2mvkj

ukj�0� � 2ip2kj�0��mvkj .
(7)
2410
In the cases of interest, the dependence of c on z is
exponential near the well, c ~ exp�2gz�. Therefore

z�0� � z0, pz�0� � ig � i
q

2m�U�z0� 2 Eg� . (8)

Under the barrier, the potential U�z� varies on the scale
bigger than 1�g, and then g in (8) is independent of the
exact position of the plane z � z0.

By solving the linear equations of motion (5) for the
phonon variables ukj , pkj with the boundary conditions
(6) and (7), we can eliminate them (cf. [9]). Then SE takes
the form of a retarded action for 1D motion,
SE�z� �
1
2

Z 2tf

0
dt1

"
m
2

�dz�dt1�2 1 U�z� 2 Eg 1
1
2

mv2
cz2�t1� 2 �mv2

c�4N�
X
kj

vkj

3
Z t1

0
dt2 z�t1�z�t2� exp�2vkj�t1 2 t2��

#
. (9)
In (9) we symmetrically continued the trajectory z�t� from
tf to 2tf , with z�tf 1 x� � z�tf 2 x� for 0 # x # tf ,
and set z0 � 0. The added section of the trajectory cor-
responds to underbarrier motion from the boundary of the
classically accessible range back to the potential well. The
tunneling rate W ~ exp�2R�, with R � 2 minSE .

For small magnetic fields, the field-induced correction
to the tunneling exponent (9) is quadratic in vc. It can
be calculated along the zero-field trajectory dz�dt �
�2�U�z� 2 Eg��m�1�2. This correction is always positive:
magnetic field decreases the tunneling rate. However, the
correction is smaller than in the absence of the electron-
electron interaction.

Remarkably, although a part of the energy of the tun-
neling electron goes to WC phonons, the tunneling rate
increases with the increasing phonon frequencies. If the
characteristic vkj largely exceed the reciprocal tunneling
time 1�tf and vc, then z�t2� 	 z�t1� in the second term in
(9). As a result, the B-dependent terms in (9) cancel each
other, and tunneling is not affected by the magnetic field at
all. This happens because, as the tunneling electron moves
under the barrier, its in-plane momentum is adiabatically
transferred to the entire WC, similar to the Mössbauer ef-
fect. This can be contrasted with the case of an electron
confined inside the well but not under the barrier. Here the
magnetic barrier is reduced by a factor of 2 compared to
the free-electron case, but does not disappear [6].

We now apply the results to electrons on helium and
compare them with the experiment [5]. We will use the
Einstein model of the WC in which all phonons have the
same frequency vp , which we set equal to the character-
istic plasma frequency �2pe2n3�2�m�1�2. The numerical
results change only slightly when this frequency is varied
within reasonable limits, e.g., is replaced by the root mean
square frequency of the WC v equal to [14]

v �

"X
kj

v2
kj�2N

#1�2

	 �4.45e2n3�2�m�1�2. (10)

For an electron which is pulled away from the helium
surface by the field §�, the potential U�z� has the form
U�z� � 2Lz21 2 je§�jz 2 mv2z2 (11)

for z . 0 (outside the helium). On the helium surface
(located at z � 0), U�z� has a high barrier �1 eV which
prevents the electron from penetrating into the helium.

In (11), the term ~L � e2�e 2 1��4�e 1 1� describes
the image potential, and e 	 1.057 is the dielectric
constant. The field §� is determined by the helium cell
geometry and depends on the applied voltage and
the electron density n, cf. [15]. The term ~mv2 

e2

P0
jRlj

23�2 describes the Coulomb field cre-
ated by other electrons at their lattice sites Rl (the
“correlation hole” [8,16]), for the tunneling length
L , n21�2. The conditions 1�g ø L ø n21�2 are
typically very well satisfied in the experiment, with
1�g � 1�Lm 	 0.7 3 1026 cm, L � g2�2mje§�j �
1025 cm for typical §� � 10 V�cm, and n21�2 �
1024 cm.

The magnetic field dependence of the tunneling rate cal-
culated from Eqs. (5)–(8) is shown in Fig. 1. The ac-
tual calculation is largely simplified by the fact that, deep
under the barrier, the image potential 2L�z in (11) can
be neglected. The equations of motion (5) then become
linear, and the tunneling exponent R � 2SE�tf� can be
obtained in an explicit (although somewhat cumbersome)
form, which was used in Fig. 1. The correction to R from
the image potential is �1�gL. When this and other correc-
tions �1�gL are taken into account, the theoretical curve
in Fig. 1 slightly shifts down (by &20% even for strong
B), which is much less than the uncertainty in R due to
the uncertainties in n and §� in the experiment [5]. The
theory is in excellent agreement with the experiment, with
no adjustable parameters.

The dependence of the potential U�z� on n gives rise
to the density dependence of the escape rate W�B� even
for B � 0. We calculated the exponent and the prefactor
in W�0� by matching the WKB wave function under the
barrier for 1�g ø z ø L with the intrawell solution. The
latter was sought in the form c�z� � z exp�2A�z��. The
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function dA�dz satisfies a Riccati equation which can be
solved near the well �z ø L� by considering the last two
terms in (11) as a perturbation. When calculated to the
first order in this perturbation, A allows one to find not
only the exponent but also the leading term in the prefactor
in the WKB wave function. The resulting tunneling rate
is shown in the inset of Fig. 1. It fully agrees with the
experiment [17].

For semiconductor heterostructures, tunneling in corre-
lated systems has been investigated mostly for the mag-
netic field B perpendicular or nearly perpendicular to the
electron layer (cf. [4]). The data on tunneling in a field par-
allel to the layer refer to high-density 2DESs [18], where
correlation effects are small. We expect that tunneling
experiments on low-density 2DESs in parallel fields will
reveal electron correlations not imposed by the magnetic
field, give insight into electron dynamics, and possibly
even reveal a transition from an electron fluid to a pinned
Wigner crystal with decreasing n.

The effect of a parallel magnetic field is most pro-
nounced in systems with shallow and broad barriers U�z�.
For example, in a GaAlAs structure with a square bar-
rier of width L � 0.1 mm and height g2�2m � 0.02 eV,
for the electron density n � 1.5 3 1010 cm22 and B �
1.2 T, we have vpt0 	 0.6 and vct0 	 1 (t0 � mL�g

is the tunneling duration for n � B � 0).
Electron correlations give rise to a coordinate-depen-

dent lowering of the barrier (see Fig. 2). For nL2 ø 1,
U�z� � g2�2m 2 mv2z2, 0 , z , L (we count U off
from the intrawell energy level Eg). The picture of tun-
neling depends on the parameter n �

p
2 vt0. For n , 1

the electron comes out from the barrier at the point z � L,
where U�z� is discontinuous (cf. Fig. 2b). In this most im-
portant case, the boundary conditions (6) for the tunneling
trajectory should be changed to

z�tf� � L, ukj�tf� � 0 , (12)

but the tunneling exponent is still given by Eq. (9).
For B � 0 the tunneling exponent R decreases with

n, R � gL�n21 arcsinn 1 �1 2 n2�1�2� for n , 1, and
R � pgL�2n for n . 1. Magnetic field causes R to in-
crease and the tunneling rate to decrease. The effect is
reduced by the interelectron momentum exchange. The
results for the Einstein model of the WC with vkj � vp

are shown in Fig. 2. The inset of Fig. 2 shows how R is
decreased by the electron correlations even for B � 0.

We have used the model of a WC to analyze the effect
of electron correlations on tunneling in a magnetic field
parallel to the electron layer. We showed that the electron-
electron interaction gives rise to an exponential increase of
the tunneling rate compared to its single-electron value in
a strong magnetic field. The effect is determined by the
interrelation between the frequencies of in-plane electron
vibrations and the reciprocal tunneling time. For long
tunneling time, the physics of large changes in the decay
rate is closely tied to the physics of the recoilless fraction in
the Mössbauer effect. Since the major contribution comes
from the short-wavelength vibrations, the results should
apply not only to WCs, but also to all 2DESs with short-
range order. Our results give a quantitative no-parameter
fit to the experimental data [5] on tunneling of strongly
correlated electrons on helium.
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