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We study inelastic electron-electron scattering mediated by the exchange interaction of electrons
with magnetic impurities and find the kernel of the corresponding two-particle collision integral. In
a wide region of parameters, the kernel K is proportional to the inverse square of the transferred en-
ergy, K ~ J4�E2. The exchange constant J is renormalized due to the Kondo effect. At small energy
transfers, the 1�E2 divergence is cut off; the cutoff energy is determined by the dynamics of the im-
purity spins. The obtained results may provide a quantitative explanation of the experiments of Pothier
et al. [Phys. Rev. Lett. 79, 3490 (1997)] on anomalously strong energy relaxation in short metallic wires.
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The effect of magnetic impurities on the electron proper-
ties of a metal is drastically different from that of “usual”
defects which just violate the translational invariance of
the crystalline lattice. The reason for the difference is
that a magnetic impurity brings an additional degree of
freedom—its spin. If there were no exchange interaction
with the itinerant electrons, the ground state of the sys-
tem would be degenerate with respect to the orientation of
impurity spins. Weak exchange interaction allows an itin-
erant electron to flip its spin in the course of scattering on
a magnetic impurity. Such scattering, accounted for even
in the lowest-order (Born) approximation, yields an impor-
tant effect of dephasing of the electron state. Finite dephas-
ing time, in turn, suppresses the interference corrections
to the conductivity, thus suppressing the weak localization
effect [1].

The higher-order terms in the perturbation theory
series for the scattering amplitude reveal one more im-
portant phenomenon. It turns out that the amplitude of
scattering caused by the exchange interaction increases
with lowering the temperature, as opposed to the
temperature-independent scattering on a usual impurity.
This increase is responsible for the nonmonotonic tem-
perature dependence of the resistivity of a metal, the
phenomenon called the Kondo effect [2].

Spin exchange between an electron and a magnetic im-
purity may occur in an act of elastic scattering. Account-
ing for these spin-exchange elastic processes is sufficient
for understanding the dephasing phenomenon [1] and the
Kondo effect [3]. However, such processes do not lead
to any energy relaxation of electrons. In this paper we
demonstrate that magnetic impurities may also mediate en-
ergy transfer between electrons. If the energy transfer E is
larger than the Kondo temperature TK , then the energy re-
laxation occurs predominantly in two-electron collisions.
We derive the kernel K of the corresponding collision in-
tegral in the kinetic equation for the distribution function.
This kernel depends strongly on the transferred energy,
K ~ J4�E2. The dependence of K on the energies ´i of
the colliding electrons (measured from the Fermi level) is
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relatively weak as long as j´ij ¿ TK . This dependence
comes from the logarithmic in j´ij renormalization of the
exchange integral J, known from the theory of Kondo ef-
fect [2]. At small energy transfers, the 1�E2 divergence
of the kernel is cut off; the cutoff energy is determined
by the dynamics of the impurity spins, which results from
their interaction with the Fermi sea.

The motivation for our study comes from the experi-
ment [4,5] where the relaxation of the electron energy dis-
tribution function in mesoscopic wires was investigated.
It was found that the empirical relation K ~ 1�E2 holds
in a substantial interval of energies E for Au and Cu
wires. The data of Refs. [4,5] were accurate enough to
rule out the direct Coulomb interaction [6], which would
yield K�E� ~ 1�E3�2, as a source of relaxation.

We describe the metal with magnetic impurities by
means of the exchange Hamiltonian:
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where index l labels the magnetic impurities, Ŝl is the spin
operator of the lth impurity, Ŝ2

l � S�S 1 1�, and rl is its
coordinate. Free electron states are labeled by the wave
vector k and spin index a. The Pauli matrices are denoted
by s � �sx , sy , sz�.

If the concentration n of the impurities is low enough,
they can be considered independently. Therefore we will
perform our calculations for a single impurity, omitting the
impurity index l, and then will multiply the resulting ex-
pressions for the scattering rate by n. In this one-impurity
problem, there is interaction only in the s channel, so we
label the participating electron states with scalar index k.

In the framework of the exchange Hamiltonian (1), the
lowest nonvanishing order of the perturbation theory se-
ries in the exchange constant J for the inelastic scattering
amplitude is the second order:
© 2001 The American Physical Society
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In the diagrammatic representation, the amplitude is the sum of the diagram shown in Fig. 1 and the three other diagrams
that can be obtained from the diagram of Fig. 1 by the transposition of indices 1 $ 2 and/or 3 $ 4. Note that there is
no summation over the initial or final spin states of the impurity in Eq. (2). Therefore, the spin lines are not closed; i.e.,
contrary to Ref. [8] this scattering amplitude cannot be represented in the form of an effective four-electron vortex.
Performing the time integrations in Eq. (2), we obtain the standard expression for the second-order term of the expansion
of the T matrix,

A�k1s1, k2s2, S ! k3s3, k4s4, S0� � �k3s3, k4s4, S0jV̂
1

jk1 1 jk2 2 Ĥ0
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The denominator in Eq. (3) is the energy of the intermediate virtual state, which equals 6�jk1 2 jk3� for two of the four
possible pairings of the electron creation-annihilation operators in Eqs. (2) and (3) (one of these pairings is shown in
Fig. 1), or 6�jk1 2 jk4� for the other two pairings. The spin structure of the scattering amplitude can easily be found
from Eq. (3). In a scattering event, spins of one or both participating electrons must flip, with the corresponding change of
the impurity spin. In this paper we are interested only in the relaxation of the electron energy distribution and assume that
the system does not have any spin polarization. Therefore we need to calculate only the total cross section of scattering
into all possible spin states, averaged over the initial spin states of the impurity and two electrons. After this averaging,
the terms proportional to ��jk1 2 jk3� �jk1 2 jk4��21 drop out. Finally, we get the rate of scattering of two electrons
with energies ´1 and ´2 into states with energies ´3 and ´4:
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Substituting this expression into the collision integral [9] and taking into account the symmetry ´1 $ ´2, ´3 $ ´4
on the right-hand side of Eq. (4), we obtain the collision integral in the form
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where the kernel
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depends only on the energy E transferred in the collision,
and f�´� is the electron energy distribution function.

The above derivation of the inelastic amplitude [Eq. (3)]
was performed in the lowest nonvanishing order of the
perturbation theory. It is known from the theory of
the Kondo effect that for the elastic scattering amplitude,
the calculation in the lowest order may be insufficient.
The higher in Jn orders yield contributions to the elastic

FIG. 1. A characteristic diagram for the amplitude of inelastic
electron-electron scattering mediated by the exchange interaction
of electrons with a magnetic impurity, in notation of Ref. [7].
The solid lines denote electron states; the dashed lines denote
the localized spin state.
scattering which logarithmically diverge at low energies
[3,7]. For elastic scattering, the leading terms in all orders
can be summed up with the help of the renormalization-
group technique [10]. In this technique, the bare exchange
constant is replaced by the renormalized one,

J�´� � �n ln�j´j�TK ��21, (7)

and the scattering amplitude at energy ´ is to be calculated
within the Born approximation in J�´�. The Kondo tem-
perature TK is related to the parameters of the Hamiltonian
(1) by

TK � m
p

Jn D exp�21�Jn� . (8)

Here D is the high-energy cutoff, and m � 1 (for a detailed
discussion of these parameters, see Ref. [11]).

Similar to the theory of elastic scattering, the lowest-
order result (6) is valid only while ln�j´ij�TK � ¿ 1.
At smaller energies, the two vertices of Fig. 1 acquire
corrections of the form Jn�Jn ln�D�j´ij��m in the
�m 1 1�st order of the perturbation theory. The two
vertices are renormalized independently from each other
[12], and the corresponding diagrams have the same
structure as in Ref. [7]. This approximation is justified
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as long as the energies ´i of all incoming and outgoing
electrons satisfy the condition

ln�j´ij�TK � * 1 . (9)

The resulting nonperturbative expression for the kernel in
the collision integral reads
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We emphasize that the dependence of the kernel K on
the energies of participating electrons remains weak (log-
arithmic), as opposed to the strong 1�E2 dependence on
the transferred energy E. The logarithmic dependence in
Eq. (10) is meaningful as long as the electron energies ´i

exceed the smearing of the Fermi level caused by tempera-
ture or a nonequilibrium electron distribution. In the op-
posite case, the arguments of all the logarithms in Eq. (10)
must be replaced by ´��TK , where energy ´� characterizes
the smearing. It is important to note that ´� does not cut
off the singularity in the transferred energy E.

The low-energy divergence of the scattering rate (4)
stems from the degeneracy of spin states of the impurity.
Because of this degeneracy, the energy of the intermediate
virtual state [the denominator in Eq. (3)] approaches zero
at E ! 0. An additional condition for the divergence is
the time independence of the average �S0jŜj�t�Ŝk�t0� jS� in
the approximation of Eq. (2) (here j, k � x, y, z). In fact,
exchange interaction between the itinerant electrons and
impurity may flip its spin. The resulting impurity spin cor-
relation function decays, restricting the lifetime of the in-
termediate virtual state. The corresponding decay rate cuts
off the E � 0 singularity of the kernel (10). The manner
of decay depends on the electron energy distribution f�´�.
We discuss first the cutoff in the case of weak deviations
of f�´� from the thermal equilibrium.

Let us first consider the low-energy cutoff for K�E� at
high temperatures, T ¿ TK . Scattering of electrons off
the spin results in exponential decay of the correlation
function, �S0jŜj�t�Ŝk�t0� jS� ~ exp�2jt 2 t0j�tT �. The
impurity spin correlation time tT can be evaluated with
the help of the Fermi golden rule. Since the deviation
from the thermal equilibrium is weak, we can replace
f�´� with the Fermi distribution function nF�´�,
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When T is lowered towards TK , the exchange constant in
Eq. (11) is renormalized according to Eq. (7) with ´ � T .
The resulting expression for the spin-flip rate reads
2402
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The energy scale h̄�tT sets the limit of applicability of
Eq. (3) and cuts off the singularity in the kernel (10)
at E � h̄�tT . Note that within the limits of applicabil-
ity of Eq. (12), the spin-flip rate satisfies the condition
T . h̄�tT . TK .

At T , TK , we can neglect the effect of a finite tem-
perature on the scattering of electrons with j´ij ¿ TK .
The behavior of K�E� can be related to the time depen-
dence of the zero-temperature self-correlation function of
the impurity spin. At time difference jt 2 t0j ¿ h̄�TK

this correlation function decays as �GSjŜj�t�Ŝk�t0� jGS� �
djk��TK jt 2 t0j�2, and therefore the singularity of the ker-
nel K�E� is cut off at E � TK (here jGS� is the ground
state of the Kondo problem).

At this point, we should mention that at energy transfers
E � TK , the processes with participation of three or more
electrons must also be taken into account along with the
two-particle scattering. The consideration of these mul-
tiparticle processes is an arduous task lying beyond the
scope of this paper. Here we address mostly the electron
energy relaxation on large (*TK ) energy scales. It allows
us to limit our consideration to the two-particle processes
accounted for by Eq. (5) and dispense with the scattering
events involving more particles.

At very small energies (j´ij, T ø TK ), however, the
Fermi-liquid description of electrons is again a valid tool.
The behavior of the system is described in this case by
the quadratic fixed-point Hamiltonian, in which the four-
fermion interaction is a least-irrelevant term [13,14]. The
calculation of the inelastic scattering rate is then straight-
forward; the resulting collision-integral kernel is given by

K�E� �
1

T2
K

n
n

. (13)

When T � 0, the corresponding rate of inelastic electron
scattering is h̄�tin �

R´

0 dE K�E�E ~ �´�TK �2. At ´ !
0, it decreases faster than ´, as it is supposed to be in the
Fermi-liquid picture.

Relaxation of the electron energy distribution was in-
vestigated experimentally in metallic wires of Cu and Au
in Refs. [4,5]. In these experiments, a finite bias V �
50 500 meV was applied to the ends of a wire. It was
found that starting from fairly small wire lengths, the elec-
tron distribution is smeared over the range of energies eV ,
instead of having two distinct steps created by the bias
applied to the wire ends. The observed electron energy
relaxation was attributed [4,5] to two-electron collisions.
The collision-integral kernel for E , eV extracted from
the experiments has the form K�E� � h̄��t0E2�, with a
cutoff at some low energy, which scales linearly with eV
[15]. The value of the parameter t0 was 0.5–1.0 ns for Cu
wires and 0.1 ns for Au wires [16].

Now we discuss the possibility of such relaxation due
to the electron scattering on magnetic impurities in wires.
In the experimental setup, the electron distribution is
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smeared, and the width of smearing eV exceeds both T
and the energies j´ij of the colliding electrons. Assuming
also that eV ¿ TK , we can simplify the kernel (10):

K�E� �
p

2
n
n

S�S 1 1� �ln�eV�TK ��24 1
E2 . (14)

The 1�E2 dependence in Eq. (14) persists down to the
cutoff, which is determined by the spin-flip rate 1�teV .
The derivation of the spin-flip rate in these nonequilibrium
conditions follows the same path which led to Eq. (12) and
results in

h̄
teV

� gS�S 1 1� �ln�eV�TK ��22eV . (15)

Here the numerical constant g � 1 depends on the detailed
shape of the nonequilibrium electron distribution.

Now we compare theoretical results (14) and (15) with
the experimental observations for Au wires [5]. Properties
of these samples are compatible with the presence of iron
impurities with a concentration up to a few tens of ppm
[15]. We take the density of states in Au at the Fermi
level n � 0.25 �eV site�21 [17], and TK � 0.3 K for Fe
impurities in Au [2]. The typical value of voltage in the
experiments [5] was V � 0.3 meV [15]. Substituting
these parameters into Eq. (14), we see that a relatively
small concentration n � 10 ppm is sufficient to reproduce
the experimentally measured value t0 � 0.1 ns [18]. The
spin-flip rate (15) is the low-energy cutoff for the 1�E2 de-
pendence of the kernel. This cutoff is roughly proportional
to the applied voltage, in agreement with experimental
observations [15]. We must note, however, that the lower
voltages used in experiment [5] are close to the Kondo
temperature, so the leading-logarithmic approximation
[7,10], used in the derivation of Eqs. (14) and (15), may be
insufficient.

The inelastic electron scattering off magnetic impurities
must be sensitive to an external magnetic field polarizing
the spins in the system. The Zeeman splitting gmH of
the spin states prevents the impurity spins from changing,
thus suppressing the inelastic scattering processes with en-
ergy transfers E , gmH. Measurements in a sufficiently
strong magnetic field may elucidate the role of magnetic
impurities in the electron energy relaxation.

An important feature of the electron-electron interaction
mediated by magnetic impurities is that it is not translation-
ally invariant. This is why the introduction of nonmagnetic
impurities, which affects drastically Coulomb interaction
of electrons [6], produces only small corrections to the in-
teraction induced by magnetic impurities.

The above consideration was performed for the mag-
netic impurities described by the one-channel Kondo
model. However, the proportionality of the scattering
integral kernel to 1�E2 at E ¿ TK holds for an arbitrary
number N of channels in the Kondo problem. If the
exchange constants J are the same for all channels,
the kernel (6) acquires an additional factor N2. For
the specific case N � 2, the qualitative K�E� ~ 1�E2
behavior was noticed in Ref. [19]. However, in Ref. [19]
this behavior was attributed solely to N � 2; this, in our
opinion, is inaccurate. Our consideration also indicates
that at any N , the 1�E2 divergence of the kernel K�E� is
cut off at small E; see Eq. (15). This is also in apparent
disagreement with Ref. [19], which states that for N � 2
the divergence persists down to the lowest energies.

In conclusion, we have shown that the exchange inter-
action of itinerant electrons with magnetic impurities can
facilitate inelastic electron-electron scattering. We derived
the kernel of the corresponding collision integral and found
its explicit dependence on the parameters of the system for
a wide range of the energies of colliding electrons. This
allowed us to perform a quantitative analysis of the ex-
perimental results of Refs. [4,5]. We find that a very small
density of magnetic impurities could lead to the anomalies
in the electron energy relaxation observed there.
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