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in the Phase Separating or Ordering Systems
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We present robust scaling laws for the Euler characteristic and curvatures applicable to any symmetric
system undergoing phase separating or ordering kinetics. We apply it to the phase ordering in a system of
the nonconserved scalar order parameter and find three scaling regimes. The appearance of the preferred
nonzero curvature of an interface separating = domains marks the crossover to the late stage regime

characterized by the Lifshitz-Cahn-Allen scaling.
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Surfaces are ubiquitous in nature since they accompany
almost every phase transition (with some exceptions, e.g.,
Kosterlitz-Thouless phase transition). If we quench a uni-
form system into the thermodynamically unstable region
in the phase diagram we observe the formation of domains
[1-4] in this system. The domains coarsen in time and
their dynamics depends on the local mean curvature of the
interface between them [1,5]. Here we show that the curva-
ture distribution and the Euler characteristic of these inter-
faces give a deep insight into the process of phase ordering
kinetics.

The systems undergoing phase transitions often exhibit
scaling phenomena, i.e., a morphological pattern of the
domains at earlier times looks statistically similar to a
pattern at later times apart from the global change of scale
implied by the growth of L(z)—the typical size of the
domains. Quantitatively it means, for example, that
the correlation function of the order parameter (density,
concentration, magnetization, etc.) g(r,7) = g[r/L()],
where L(r) ~ t" with n different for different universality
classes [1,6]. Assuming the scaling hypothesis we can
derive all the scaling laws for different morphological
measures such as the Euler characteristic, x(z), surface
area, S(¢), the distribution of the mean, Py(H, t), and the
Gaussian, Pg (K, t), curvatures. We find

x(t) ~ L(1)™, (1)

S@) ~ L™, )

Py(H,1) = PL[HL(D]/L(1), 3)
Pg(K,1) = PR[KL(®)“Y"V]/L(6)“ D, )

where d is the dimensionality of the system. The first law
follows from the Gauss-Bonnet theorem, y = vy [dS K,
where [ dS denotes the integral over the surface and 7y
is twice the inverse of the volume of a (d — 1)-
dimensional sphere of radius 1 (for d = 3, y = 5-).
Since K ~ L()"¢*!'and § ~ L(¢)~! we find scaling (1).
The scaling law (2) follows from the congruency of the
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domains [7]. In d = 2 scalings (3) and (4) are equivalent.
Despite the fact that such obvious tests for the scaling
hypothesis exist they have not been checked in computer
simulations even for the simplest system exhibiting phase
ordering kinetics, i.e., the three-dimensional (3D) system
of the scalar nonconserved order parameter. Here we fill
this apparent gap and also point out that these tests are
robust, i.e., apply to any system exhibiting phase ordering
or separation.

The model.—The evolution of the system of the scalar
nonconserved order parameter following a quench from
the temperature 7 = © to 7T = 0 follows the time de-
pendent Ginzburg-Landau (TDGL) equation [1,5,6,8,9]:
dp(r,t)/ot = —S8F[¢p]/6 ¢, where the Ginzburg-Landau
free energy functional is given by

F61= [ ar(3 960 + £(6()).

and the bulk free energy f(¢p) = —¢>/2 + ¢*/4. The
equations have been solved on the cubic lattice of sizes
ranging from 40° to 100%. All the quantities computed
in the simulations have been averaged over 150 runs. A
simple Euler integration scheme with time step At = 0.05
and mesh size Ax = 1 has been used. The initial condi-
tions have been chosen from the uniform distribution of
field ¢ with zero mean. In order to check the results
against numerical artifacts we have varied the mesh size
between Ax = 0.5 and 2 and also used 6, 18, and 26 point
approximations for the Laplacian with no apparent changes
in the obtained results. Additionally we have studied a 2D
system of size 1024 X 1024.

The method of analysis.— Every time step we determine
the position of the interface separating the = domains. The
interface given by the equation ¢ (r) = 0 is located (on the
cubic lattice) by the linear interpolation of field ¢ between
the lattice points. We find that after the initial transient
time with many separated interfaces we get into the regime
where there is a single surface in the system separating the
¢ > 0 domain from the ¢ < 0 domain. The = domains
percolate and the system is bicontinuous. The surface
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is triangulated: = The surface area is computed as the
area of all the triangles covering the surface, and the Euler
formula has been used to compute y,ie., y = F + V —
E, where F' is the number of faces of the triangles, V is
the number of vertices of the triangles, and E is the num-
ber of edges. The computation of the curvatures from the
bulk field ¢ using the standard differential geometry
[10,11] has proven to be inaccurate. Therefore we have
used the very accurate Descartes formula which is de-
scribed below. For each vertex on our triangulated surface
we can define an angle deficit by T; = 27 — ';-":1 af,
where m is the number of triangles which meet at the
ith vertex, and a; is the angle between the two edges
of the jth triangle at this vertex. The Gaussian curvature
at the ith vertex is given by K; = T;/S;, where S; is % of
the area of the triangles. In order to check this formula
we have used the Gauss-Bonnet theorem relating K and
x- In our simulations the relative error is less than 107°;
additionally we have tested it on the minimal surfaces
[10,11] with similar accuracy. The mean curvature, H;,
at the ith vertex has been computed from the following
formula: H;S; = % (. I]6], where I} is the length
of the edge of the jth triangle, and Hf is the angle between
the adjacent triangles j and j + 1. We have determined
the distribution of the Gaussian and mean curvatures
for the surface during the ordering transition. We have
also determined the equal time correlation function:
g(r, 1) = (sgn(¢(r,1))sgn(¢ (0, 1))) for which an approxi-
mate, analytical formula exists, given by Ohta, Jasnow,
and Kawasaki [12]:

glr,t) = %arcsin{exp[—rz/L(t)z]}. (6)

Equation (6) has been used to derive the exponent n. This
equation and some other slightly inferior approximations
[13,14] have been shown to work well [15-19], despite
certain problems with the assumptions underlying these
approximations [16,17].

The results.—1In Fig. 1 we show x(z), S(¢), L(z)
[obtained from Eq. (6)], and {|¢|) as a function of time
for three system sizes: 503, 803, and 100°. As we can
see there is a clear change in the slope of Iny indicating
the change of the scaling regime. In the early regime the
exponent for y is —%(—1.53 * 0.05) and in the inter-
mediate regime —1 (—1.04 = 0.05). For S(z) we find
the exponent —% (—0.51 £ 0.01) in the first regime and
—% (—0.40 = 0.01) in the second regime. The crossover
time does not depend on the size of the system and from
the plot of In{|¢|) we find that it corresponds to the satu-
ration of the order parameter, (1), inside the domains. In
Fig. 2 the histograms for the mean curvature are shown for
two scaling regimes. As we can see from this figure in both
regimes Py(H,t) = Py[HL(t)]/L(t), but in the early
regime n = 0.50 = 0.01 and in the intermediate regime
n = 041 = 0.02 (Fig. 1). Py(H,t) is peaked at H = 0.
We find in the early regime Px(K,t) = Px[KL(t)]/L(1),
but in the intermediate Px(K,7) = Px(Kt3/5)/13/5. The
average Gaussian curvature is negative. As we can
see the scaling laws [(1),(4)] do not hold in the in-
termediate regime. We have additionally analyzed the
scaling of the principal curvatures obtained from the
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FIG. 2. The histograms of the mean
curvature for different times shown to-
gether with the rescaled histograms.
In both regimes (shown in Fig. 1) we
find Py(H,t) = PR[HL(t)]/L(t), with
L(r) = Y2 for t < 1, and L(¢) = */* for

5 1

375 | 4 s 07
T~ =

g2 25} S 0s
- E

125 | 1 aF 025

0 0

-1 -0.5 0 0.5 1

equations H = (1/R; + 1/Ry)/2 and K = 1/(R|R>)
and found that (1/R) = 1/S [dS/R, ~ —(1/R;) =
—1/S [dS/Ry ~ 1/L(1) in the early regime and ~¢~ /10
in the intermediate regime. Additionally we have deter-
mined (K)/+/(1/R?)(1/R3) ~ const in the early regime
and ~r~'/2 in the intermediate regime. We also find
that (K) ~ (1/R;){1/R2) ~ 1/L(¢)*> only in the early
regime.

Physical consequences and interpretation of the re-
sults.—If we divide the volume V of the system into
spheres of radius L(7) connected by the passages we
find y(¢t) = Vp(t)/L3(t), where p(t) is the number of
necks or passages piercing the surface of the sphere.
In the early regime p(¢#) ~ 1 is independent of time
indicating that for each sphere of size L(t) we have
one passage or connection. In the intermediate regime
we find p(t) ~ r'/5 indicating the decoupling between
domains and connections joining them. The “partially
frozen” necks have the local shape of the minimal surface
(saddlelike) [10,11] with H = 0. They are responsible for
slowing down the kinetics and the change of the exponent
for the domain growth law from n = 0.5 (early regime)
to n = 0.4 (intermediate regime). The exponent found in
the early regime (characterized by the small value of ¢
inside the domains and broad interfaces) follows from the
linearized TDGL equation.

Our results do not contradict the late stage scaling
hypothesis [1] in the late stages of the phase ordering.
In order to prove it we did the simulations for the 2D
system of size 1024 X 1024 and found three scaling
regimes. The first two regimes are the same as the ones
found in the 3D system with the crossover between them
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t > t... The distributions Py are normal-
ized as f Py(H,t)dH = 1; the curvature
H is given in dimensionless units. The
system size is 50 X 50 X 50.

HL(t)

at t., and the third regime is the expected late stage
scaling regime with L(r) ~ ¢t'/2 recovered after quite
a long time, t = 400, not accessible in the 3D system
due to the finite size effects even for the system of size
100 X 100 X 100. In the early and intermediate regimes
the curvature distribution is peaked at H = 0 (with
(H) = 0) in 2D and 3D systems. In 2D it indicates that
the system consists of elongated noncircular domains with
large parts of flat interfaces. In 3D H = 0 and negative
(K) indicate a saddle shape of the parts of the interface,
very characteristic for minimal surfaces [10,11]. The
crossover to the late stage scaling regime (with exponent
0.5) occurs in 2D when the domains become “circlelike”
with the curvature distribution characterized by a single
peak at H ~ 1/L(¢) (and not at H = 0). The appearance
of the preferred nonzero curvature marks the crossover to
the late stage scaling regime. This result is important for
the application of the Lifshitz-Cahn-Allen argument [5].
Cahn and Allen proved [5] that when the order parameter
saturates inside the domains the coarsening proceeds via
the local displacement of the interface with the local
velocity v = —H irrespective of the dimensionality of
the system. The typical time needed to close the domain
of size L(t) is t ~ L(t)/v = L(t)/Hchar, Where Hcpar
is the characteristic curvature in the system. Now if
Henar ~ 1/L(¢) we find L(z) ~ t'/2. In the 3D system we
expect the same behavior, i.e., that the crossover from the
intermediate to the late stage scaling regime is related to
the appearance of the nonzero preferred curvature. The
3D system is bicontinuous with the single interface sepa-
rating two * percolating domains. This interface should
assume the shape of the “constant mean curvaturelike”
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surface in the late stage regime. Such surfaces have been
studied in the context of periodic surfaces [19].

The late stage scaling has been confirmed in many 2D
simulations [20—22]. The intermediate scaling regime in
the 2D and 3D systems was observed in Refs. [23-25],
but it was incorrectly attributed to the finite size effects
[24]. So far late stage scaling has not been confirmed in
3D simulations.

Conclusions.—We have found three scaling regimes in
the phase ordering system with two nontrivial crossovers:
early-intermediate regime crossover related to the satura-
tion of the order parameter inside the domains and the
appearance of partially frozen interface characterized by
H = 0, and intermediate-late regime crossover related to
the appearance of the preferred nonzero curvature [H ~
1/L(#)] of the interfaces between = domains.

The morphological studies have been recently done for
the spinodal decomposition in 3D systems of homopoly-
mer blends [26,27] and the 2D system of the conserved
order parameter [28], but our analysis is the first which
provides determination of morphological measures with
unprecedented accuracy, giving new insight into phase or-
dering kinetics.
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