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We investigate, by numerically calculating the charge stiffness, the effects of random diagonal disorder
and electron-electron interaction on the nature of the ground state in the 2D Hubbard model through the
finite-size exact diagonalization technique. By comparing with the corresponding 1D Hubbard model
results and by using heuristic arguments we conclude that it is unlikely that there is a 2D metal-insulator
quantum phase transition, although the effect of interaction in some range of parameters is to substantially
enhance the noninteracting charge stiffness.
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A question of fundamental importance is whether the
ground state of an interacting disordered electron system
is a metal, an insulator, or some other state (e.g., super-
conductor). This question takes on particular significance
in two-dimensional (2D) systems where it is generally ac-
cepted that (1) the disordered 2D system in the absence of
any interaction is a localized (weakly localized for weak
disorder) insulator, and (2) the interacting clean 2D sys-
tem is a Fermi liquid metal at high electron densities (and
a Wigner crystal at low electron densities). Little is known
about the disordered interacting system when both disor-
der and interaction are strong and of comparable magni-
tudes so that neither may be treated as a perturbation. A
notable attempt [1] by Finkel’stein to analytically explore
the nature of the disordered interacting electron system re-
mains inconclusive as the theory flows toward strong cou-
pling. Recently renewed interest has developed [2] in this
subject with much of the current motivation arising from
a set of experimental measurements on the low tempera-
ture transport properties of low density 2D electron (or
hole) systems confined in Si MOSFETs and GaAs het-
erostructures. These transport measurements (carried out
as a function of carrier density) have been interpreted [2]
by many (but not all) as exhibiting evidence for a 2D metal-
insulator quantum phase transition (MIT) with the system
being a metal at high density n �.nc� and an insulator at
low density �n , nc� with nc as the critical density sepa-
rating the two phases. Much interest has naturally focused
on this possible 2D MIT quantum phase transition, particu-
larly because the corresponding noninteracting disordered
2D electron system is thought on rather firm grounds [3] to
be always localized (Anderson localization) and therefore
strictly an insulator at T � 0 in the thermodynamic limit.
If such a 2D MIT exists it is of great interest because the
metallic phase must be a non-Fermi liquid since it cannot
be adiabatically connected to the corresponding insulating
noninteracting 2D disordered system.

In this Letter we address the nature of the ground state
of a disordered interacting 2D electron system numeri-
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cally by exactly diagonalizing the few particle 2D inter-
acting Hamiltonian and doing a disorder averaging. We
use the extensively studied 2D Hubbard model [4] and its
natural extensions for our exact diagonalization calcula-
tions. We study the effects of both on-site and longer
range interactions whereas the disorder in our model is
a random on-site disorder of strength W . Without inter-
action, our model is the 2D Anderson model, which has
a localized insulating ground state, whereas without dis-
order our model is the Mott-Hubbard model which has
an extended metallic ground state away from half fill-
ing. We restrict to low “metallic” filling factors (typically
less than quarter filling). Our typical exact diagonaliza-
tion study uses the Lanczos technique for N � 6 electrons
(with spin) on a 4 3 4 2D lattice, corresponding to a filling
of n � 6�32 � 3�16. This involves the diagonalization
of matrices of 313 6002 size. We typically average over
10 disorder realizations. Following standard notations [4]
three parameters t (the hopping amplitude), U (the on-site
interaction strength), and W (disorder strength) parame-
trize our minimal Anderson-Hubbard model. We carry
out our exact diagonalization in the subspace of the to-
tal number of electrons N and the total spin component
Sz � �2�N 2 M��2 1 M�2� with M being the number
of spin up electrons. We note that the Hilbert space grows
exponentially with the system size, and the results pre-
sented in this work are the essential current limit on what
can be achieved via the exact diagonalization technique for
this problem.

To characterize the nature of the ground state, i.e., its
localization properties, we use the technique [5] suggested
by Kohn a long time ago and calculate the charge stiffness
Dc, sometimes also referred to as the Drude weight, of the
finite system. We calculate charge stiffness for each indi-
vidual disorder realization exactly through our finite-size
diagonalization, and then obtain the root mean square av-
erage by averaging over a number of disorder realizations.
The charge stiffness Dc, which is simply related to the per-
sistent current [6], is the zero frequency weight of the long
© 2001 The American Physical Society
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wavelength conductance (i.e., the Drude weight) in the sys-
tem. As such, it is finite for a metal or a conductor and is
zero for an insulator or a localized system in the thermo-
dynamic limit [5]. Charge stiffness (or persistent current
magnitude) has been extensively used in the literature in
finite-size numerical localization studies [7] of disordered
interacting systems, and it is empirically well known that
the calculation of Dc in finite systems is an extremely ef-
fective way of numerically studying the localization prob-
lem in the presence of both interaction and disorder.

In Fig. 1 we show our calculated disorder-averaged
charge stiffness for the 4 3 4 2D Hubbard cluster (with
6 electrons) as a function of the on-site repulsion U
for various values of the disorder strength W . In the
absence of any disorder (W � 0), the clean 2D Hubbard
model away from half filling is expected to be a metal
with a finite value of Dc, whereas the corresponding 2D
Anderson model (U � 0, W fi 0) is expected to be a
weakly localized insulator for small W (crossing over to
an exponentially strongly localized insulator for large W).
The numerical results for these limiting cases (W � 0,
U fi 0 and W fi 0, U � 0) are also shown in Fig. 1 for
the sake of comparison and completeness.

The most important generic feature of the results shown
in Fig. 1 is the peak in the charge stiffness at an interme-
diate value of U � Uc � W where the calculated charge
stiffness for the finite 2D cluster has a maximum for a
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FIG. 1. The rms (averaged over 10 disorder realizations)
charge stiffness Dc as a function of onsite repulsion U in the
2D 4 3 4 disordered Hubbard cluster for 6 electrons. Results
for four values of disorder (W�t � 5, 3, 0.5, 0) are shown with
the abscissa for the clean (W � 0) system in the top. The inset
shows Dc for W�t � 0.5 in an expanded scale.
given disorder strength W . The charge stiffness Dc ap-
pears to decrease from this peak value (for a given W) for
both U _ Uc. Note that Dc increases sharply from U � 0
to U � Uc, and then decreases slowly for U . Uc. This
peak or the maximum in Dc is rather manifest in Fig. 1
for W�t � 5 and 3 (i.e., for strong disorder) whereas for
weak disorder (e.g., W�t � 0.5 in Fig. 1) the peak oc-
curs at somewhat larger values of U�W * 2 and is not
so obvious from Fig. 1 (we have explicitly verified that
the peak exists for W�t � 0.5 also). The actual value of
Uc�t clearly depends on the disorder strength W , increas-
ing with W�t from Uc�t � 0.95 for W�t � 0.5 through
Uc�t � 3.0 for W�t � 3 to Uc�t � 3.5 for W�t � 5.
The qualitative behavior of our results is explained by the
competition between U and W in the Anderson-Hubbard
model. In a disordered system the random potential W
favors a maximal occupation (double occupation for our
spin 1�2 electrons) of the lowest energy sites. The on-site
repulsion U, on the other hand, opposes double occu-
pancy and favors configurations with a minimal number of
double-occupied sites. This competition between W and
U, where W tends to localize the charge density and U
tends to homogenize the charge density, is a well-known
feature [6] of the disordered Hubbard model. The results
shown in Fig. 1, in particular the increase of Dc as U in-
creases from zero for a fixed disorder strength W , is a direct
result of the competition. Note that the actual crossover be-
havior of Dc�U, W , t� shown in Fig. 1 cannot be parame-
trized by the single parameter; U�W 2 Dc depends on
both U�t and W�t. We have carried out similar calcu-
lations in an “extended” Anderson-Hubbard model with a
long-range interaction (in addition to U) with results quali-
tatively similar to those shown in Fig. 1.

The direct interpretation of our exact finite-size results
shown in Fig. 1 is that the conductance of a finite disor-
dered 2D system increases when the interaction is turned
on (at a fixed disorder), reaching a maximum for U �
Uc � W , and then it decreases slowly with still increasing
U. The issue of applying these numerical results based on
4 3 4 2D clusters to address the fundamental question of
2D MIT is, however, extremely tricky. For example, one
popular recent line of thinking, based mostly on numeri-
cal work involving spinless electrons in finite 2D systems
[7], has been to interpret equivalent results on interaction-
enhanced conductance as evidence in favor of a 2D MIT,
with the peak in Dc at U � Uc being interpreted as an
intermediate metallic phase. We disagree with this inter-
pretation for reasons to be discussed below.

Our conclusion that the charge stiffness results depicted
in Fig. 1 do not indicate the existence of a true 2D MIT,
but instead show a crossover from an Anderson insulator
at small U�W to a disordered Mott insulator (a “Wigner
glass” phase) at large U�W with an intermediate crossover
regime (around U � Uc � W) of interaction-enhanced fi-
nite size conductance (or equivalently, an enhanced locali-
zation length), which is not a thermodynamic “metallic
phase,” is based on two complementary sets of arguments:
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(1) Comparison with the corresponding one dimensional
(1D) results; and (2) strong circumstantial evidence based
on heuristic theoretical arguments.

To better understand the nature of the 2D disordered
Hubbard model we have carried out an identical finite
system charge stiffness calculation on the corresponding
1D disordered Hubbard model (1D Hubbard rings). We
show the corresponding 1D Anderson-Hubbard model re-
sults in Fig. 2 for 6 electrons on a 12 site ring (corre-
sponding to quarter filling). The 1D results of Fig. 2 are
qualitatively identical to the 2D results of Fig. 1: Dc in
the disordered 1D Hubbard model initially increases as
a function of U�W for a fixed W , showing a maximum
at U � Uc � W , and then it decreases slowly for large
U . Uc, exactly as in 2D system. The “critical” Uc�t for
the charge stiffness peak in the 1D system is Uc�t � 0.7,
3.3, 4.5 for W�t � 0.5, 3, 5, respectively (which are not
that different from the corresponding 2D results at 3�16
filling).

Noting that the charge stiffness results shown in Figs. 1
and 2 in the 2D and 1D disordered Hubbard models, re-
spectively, are essentially indistinguishable (i.e., just by
looking at the results of Figs. 1 and 2 one does not know
which one corresponds to 1D and which to 2D since the
results are qualitatively identical) one is forced to conclude
that if the results of Fig. 1 are interpreted as exhibiting evi-
dence for a 2D MIT then one must, based on the results of
Fig. 2, infer that there is also a 1D MIT in the disordered
1D Hubbard model as a function of the interaction strength.
We mention in this context that we have verified that the
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FIG. 2. The same as in Fig. 1 for the 1D disordered Hubbard
ring of 12 sites and 6 electrons.
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1D disordered extended Hubbard model (with additional
long range interaction) produces results qualitatively simi-
lar to those in the corresponding 2D system— thus the
equivalence between 1D and 2D charge stiffness results
is valid for finite and long range interactions also.

There are, however, very compelling theoretical grounds
[8] to believe that 1D disordered systems are localized even
in the presence of interaction. Thus, the results of Fig. 2
cannot be interpreted as evidence for a 1D MIT— instead
the maximum in Dc as a function of U indicates only the
interaction-induced enhancement of the localization length
(or, equivalently the persistent current [6]), which in a fi-
nite system increases the Drude conductance or the charge
stiffness. Based on the striking qualitative similarity be-
tween the 1D (Fig. 2) and the 2D (Fig. 1) results and
the fact that both systems have strictly localized or in-
sulating ground states in the disordered, W fi 0, nonin-
teracting, U � 0, system, we therefore conclude that the
2D results of Fig. 1 do not indicate a 2D MIT; it indi-
cates only an interaction-induced enhancement of the 2D
localization length for intermediate interaction strengths
U � Uc. Note that while the intermediate-interaction
crossover regime (U � Uc) is not a new quantum phase
(it is still an insulator), the interaction-induced enhance-
ment of the 2D localization length may be extremely large,
and even the experimental 2D systems [2] showing the
so-called 2D MIT may actually be “effective” metals since
the enhanced localization lengths may be larger than the
actual system size (or, the phase breaking length at finite
temperatures).

In addition to the above empirical argument for the
nonexistence of a 2D MIT based on the comparison be-
tween 1D and 2D exact diagonalization results we have a
heuristic theoretical argument which points to the same
conclusion. The small U �!0� and the large U �!`�
interaction limits of the disordered 2D Hubbard model
are believed to be insulating or localized on theoretical
grounds. The noninteracting �U ! 0� disordered 2D sys-
tem is known to be localized for any finite disorder (the
localization length is exponentially large, the so-called
weak localization regime, for small disorder) by virtue
of the scaling theory of localization [3]. The localized
large U �!`� regime arises from the fact that the pure
Hubbard ground state (in the absence of disorder) must
have strong ferromagnetic correlations in the large-U limit
in order to minimize the interaction energy. In fact, it
is known [9] that the large U ground state of a Hub-
bard-type model with an additional next-nearest neighbor
hopping term is ferromagnetic (the same is true for the
pure Hubbard model at fillings close to half). In this limit,
therefore, interaction tends to become less relevant since
the electrons being spin polarized avoid each other. The
system in this large-U limit may thus be approximately
equivalent to a noninteracting or weakly interacting sys-
tem (albeit a spin-polarized one), and the introduction of
any disorder (W fi 0) necessarily localizes this 2D “ef-
fectively noninteracting” Hubbard system. The weakly
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localized (for small disorder) large U�! `� 2D system
has, however, an exponentially longer localization length
(which explains the enhanced Dc for large U in Fig. 1)
than the usual noninteracting (U ! 0) disordered limit
because the ferromagnetic spin-polarized phase (U ! `)
has a larger Fermi energy, which would exponentially en-
hance the localization lengths. Thus, both the small U
and the large U regimes are necessarily localized, and the
enhancement of Dc in the intermediate-U��Uc� regime
must either indicate a crossover between an Anderson in-
sulator (U � 0) and a disordered Mott insulator (equiva-
lently a Mott glass, “Wigner glass” in the corresponding
continuum system) for 1�U � 0 or involve two quantum
phase transitions —one from the low-U Anderson insu-
lator phase to the intermediate (U � Uc) metallic phase
with enhanced Dc and then again from this intermediate
metallic phase to the large-U Mott glass phase. We see
absolutely no features in our 2D or 1D numerical results
which could be indicative of such a double or re-entrant in-
sulator (U � 0)-“metal” (U � Uc)-insulator (1�U � 0)
quantum phase transition.

We conclude with a critical discussion of the recent low
temperature experimental results in low density, high mo-
bility 2D systems which have motivated the current resur-
gence in the issue of 2D MIT in disordered and interacting
electron systems. Experimentally one finds [2] that the
high density regime (n . nc) is metallic in the sense of
having a positive temperature coefficient ( dr

dT . 0) of the
resistivity r, and the low density (n , nc) is insulating
with dr

dT , 0. This has been interpreted by many [2] (but
not all [10,11]) as clear evidence of an interaction-driven
MIT occurring at a critical density nc. The standard inter-
pretation of these experimental observations as a 2D MIT
is, however, problematic because the high density phase
(i.e., the less interacting phase) is the nominal metallic
phase according to this interpretation. This makes little
sense since the noninteracting or the weakly interacting
very-high density phase must be a weakly localized 2D in-
sulator based on the scaling theory [3]. Thus, very similar
to the conclusion we reached for our exact diagonalization
numerical results, the experimental situation must corre-
spond to either a double quantum phase transition (the very
high density phase is a weakly localized insulator, with
the intermediate regime, corresponding to our peak in Dc

around U � Uc, being a novel interaction-induced metal-
lic phase) or just a sharp crossover from a high density
weakly localized insulator to a low density strongly local-
ized insulator occurring around n � nc. Experimentally,
there is little evidence for two quantum phase transitions
(note that there must be two quantum phase transitions
or none; it cannot be one quantum phase transition and
one crossover). Therefore we believe, based on arguments
similar to what we use to interpret our theoretical results
presented in this paper, that the experimental observations
are indicating a very sharp crossover (around n � nc) from
a weakly to a strongly localized 2D insulator as n de-
creases, and the high density regime (n . nc) is only an
effective metal because the effective system size (the phase
breaking length at finite T ) is smaller than the localization
length which may have been substantially enhanced by in-
teraction effects as we show in this paper. There is some
very recent experimental support [10] for this scenario.

We emphasize that the interaction induced enhancement
of Dc for 0 , U�W & 1 in Fig. 1 should not be consid-
ered as evidence in favor of a 2D MIT (as was recently
done in Ref. [7] based on finite system studies of spinless
electrons using smaller system sizes), particularly since
(1) the interaction enhancement is only effective for very
large disorder strength (W�t . 1) where the system is
likely to be localized any way (note that for weak disorder,
W�t , 1, there is essentially no interaction induced Dc

enhancement — if there is indeed an interaction-driven
2D metallic phase it is likely to be in the low dis-
order regime where Fig. 1 indicates little interaction
enhancement), and (2) the actual interaction-enhanced Dc

values in the strong disorder regime in Fig. 1 are still
extremely small in magnitude (and are much smaller than
the corresponding Dc values for noninteracting weak dis-
order system, which is still known to be weakly localized
by virtue of scaling localization). We therefore conclude
that the interaction enhancement of Dc seen in Fig. 1 (and
Fig. 2) indicates an interaction-driven enhancement of the
localization length in the strong disorder regime, and not
a 2D MIT.
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