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Renormalization-Group Calculation of the Dependence on Gravity of the Surface Tension
and Bending Rigidity of a Fluid Interface
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The surface tension and the bending rigidity of a planar liquid-vapor interface in the presence of
vanishing gravity are analyzed using the renormalization group. Based on the density functional theory
of inhomogeneous fluids, we show that a term, quartic in the density fluctuations, can be added to
the classical capillary-wave model so that a renormalization-group calculation can be performed. By
comparing the outcome of such a calculation with rigorous results relating the direct correlation function
with surface tension and bending rigidity, we find the scaling dependence of the latter on gravity. The
results agree with the expected fact that the interface should become unstable as gravity vanishes.
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The capillary-wave model of the liquid-vapor interface
is one of the most striking and interesting theoretical re-
sults [1,2] in the study of the statistical mechanics of in-
homogeneous fluids [3–5]. It was originally formulated in
a phenomenological fashion by Buff, Lovett, and Stillinger
[1] in order to describe the competition of gravity and sur-
face tension, in the form of capillary-wave fluctuations of
an otherwise planar intrinsic interface between two fluid
phases. A significative prediction of the model is that the
interfacial thermal fluctuations broaden the actual width
of the interface and, in the limit of vanishing gravity, the
width diverges (for a system infinite in size) [1,2]. More-
over, it can be shown that this broadening is the result of
the fact that the transverse correlation length of the density
fluctuations diverges as gravity vanishes [2,6]. Thus, an
analogy with a critical phenomenon can be used with grav-
ity playing the role of the distance to the critical point [7].
This roughening of the interfacial width has been clearly
demonstrated in many similar models and in numerical cal-
culations of Ising-like systems [8].

On the other hand, concentrating on a fluid interface and
using density functional theory for inhomogeneous fluids,
Romero-Rochín, Varea, and Robledo [9] showed that this
model may be derived from a general expression for the
cost in grand potential due to an arbitrary density fluctua-
tion of the Gibbs dividing surface. Specializing to terms
quadratic in the fluctuations of the surface, one obtains an
expression for the energy cost that closely resembles the
capillary-wave model but that actually includes higher or-
der terms absent in the phenomenological model. In such
a derivation use is made of exact rigorous results, namely,
the relationship between the direct correlation function and
the gradients of the external field, derived by Lovett, Mou,
and Buff [10] and Wertheim [11] (LMBW), and of the
expression for the surface tension in terms of the second
transverse moment of the direct correlation function found
by Yvon [12] and Triezenberg and Zwanzig [13] (YTZ).
The higher order terms of the extended model are ex-
pressed in terms of higher derivatives of the deviation of
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the intrinsic surface, and they certainly have physical mean-
ing [14]. The most notorious is the energy cost of bending
the surface [15]. This term is proportional to the bending
rigidity times the curvature of the surface, and the bend-
ing coefficient can be shown to be proportional to the
fourth transverse moment of the direct correlation function
(RRVR) [9,16]. The bending rigidity of fluid interfaces in
the present context has been studied extensively [17–21].

Since the physics accompanying the long range develop-
ment of the surface fluctuations indicate that a critical-like
behavior is present, Weeks [7] proposed a scaling hypothe-
sis of the corresponding correlation function in terms of
the classical capillary length L2

c � g�Drmg; here g is
the (constant) surface tension, Dr � rl 2 rg is the dif-
ference in liquid and vapor densities, m is the mass of the
fluid particles, and g is the gravitational acceleration. This
hypothesis is certainly obeyed by the original capillary-
wave model and indicates that the correlation length of the
system is the capillary length.

In this Letter, we introduce another point of view in
the relationship between exact results pertaining to the in-
terface, obtained from density functional theory, and the
“critical” behavior of the interface as gravity vanishes.
The idea is that instead of using density functional theory
to build a capillary-wave model, we rather require those
exact results to be satisfied by any phenomenological or
otherwise theory of the surface fluctuations. This ap-
proach has already been used by several authors, in mean-
field theories, to obtain expressions for surface properties
[17–19,22]. Now, for gravity almost vanishing and assum-
ing that we are facing a bona fide critical phenomenon,
we propose that there exists a “bare” capillary-wave-like
Hamiltonian, which includes fourth order surface fluctua-
tions, as in any lf4 theory, that must be renormalized.
The corresponding renormalized second order correlation
function can thus be calculated, and the moments of this
function are to be compared with the exact results: the
LMBW expression yields the dependence of the actual cor-
relation length on gravity (which differs from the classical
© 2001 The American Physical Society 2369
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capillary length), and with the use of the YTZ and RRVR
expressions for the surface tension and the bending rigid-
ity we find the dependence of those quantities in terms of
gravity. Certainly, scaling is obeyed, not in terms of the
mean-field fashion classical capillary length but in terms
of an Ising-like correlation length with Ising critical expo-
nents. We shall see that the existence of the analog of the
h exponent yields, as gravity vanishes, a diverging sur-
face tension and a diverging but negative bending rigidity.
Although these results may appear not intuitive they are
not unphysical [21,23,24]: while the surface tension op-
poses increase in area, the bending rigidity being negative
favors curvature. As gravity vanishes, the rigidity diverges
more strongly than the surface tension so that the surface
ends up with large distortions that broaden the interfacial
region. Our findings are also in agreement with indepen-
2370
dent results pertaining to the surface tension and the bend-
ing rigidity: Robert [24] argued that the second transverse
moment of the direct correlation function diverges at zero
gravity. And very recently, both by molecular dynamic
simulations [21] and by experimental results [23], it has
been found that the bending rigidity of a liquid-vapor in-
terface is unequivocally negative.

Let us begin presenting the exact results of density
functional theory [3–5,9–13]. Consider a fluid in a coex-
isting liquid-vapor state in the presence of gravity with an
equilibrium density profile r0�z�. The profile has the prop-
erties that r�z ! `� � rg, r�z ! 2`� � rl with an
interfacial region of width w in the vicinity of z � 0. The
change in grand potential due to an arbitrary density fluc-
tuation, at given m 2 Vext��r� and T , with Vext � mgz, is
given by
DV � V�r� 2 V�r0� �
kT
2

Z
d �r d �r 0 C��r , �r 0�dr��r�dr��r 0�

1
kT
4!

Z
d �r d �r 0 d �r 00 d �r 000 C�4���r , �r 0, �r 00, �r 000�dr��r�dr��r 0�dr��r�00dr��r 000� 1 . . . , (1)
where dr��r� � r�r� 2 r0�z� and �R is the projection of
the d-dimensional vector �r � �z, �R� on the z � 0 plane.
C��r , �r 0� is the direct correlation function of the fluid, and
C�4���r , �r 0, �r 00, �r 000� is the next, fourth order correlation func-
tion. Following Triezenberg and Zwanzig [13], we con-
sider the density fluctuation,
dr��r� � r0���z 2 z � �R���� 2 r0�z� � 2z � �R�
dr0

dz
, (2)

where z � �R� is an arbitrary single-valued function that rep-
resents the “capillary-wave” fluctuation of the Gibbs divid-
ing surface. Equation (1) becomes
DV �
kT
2

Z
d �R d �R0 C �j �R 2 �R0j�z � �R�z � �R0�

1
kT
4!

Z
d �R d �R0 d �R00 d �R000 C �4�� �R, �R0, �R00, �R000�z � �R�z � �R0�z � �R00�z � �R000� 1 . . . , (3)
defining the transverse direct correlation function

C �j �R 2 �R0j� �
ZZ

dz dz0
dr0

dz
dr0

dz0
C�z, z0; j �R 2 �R0j� ,

(4)

and an analogous expression for C �4�� �R, �R0, �R00, �R000�.
Lovett, Mou, and Buff [10] and Wertheim [11] derived

the following exact result:

=Vext��r� � 2kT
Z

d �r 0 C��r , �r 0�=0r0��r 0� . (5)

In the present case, this expression can be written asZ
dd21 �R C � �R� �

Drmg
kT

. (6)

Denoting by C̃ � �Q� the �d 2 1�-dimensional Fourier trans-
form of C � �R�, one may also write (LMBW)

C̃ �0� �
Drmg

kT
. (7)

In a well-known paper, Triezenberg and Zwanzig [13] iden-
tified the surface tension of the interface as the cost in V

due to an increase of area arising from the fluctuation z � �R�.
They found (YTZ)

g �
kT
2

≠2C̃ �0�
≠ �Q2

. (8)

Following the previous reasoning, Romero-Rochín, Varea,
and Robledo [9,16] calculated the bending rigidity of the
interface as the cost in V due to a change in curvature
generated by the fluctuation z � �R�. The result is (RRVR)

k �
kT
4!

≠4C̃ �0�
≠ �Q4

. (9)

Evidently, one may go to higher order terms in the ex-
pansion of C̃ � �Q�, and extend the capillary-wave model [9].
However, the relevant point now is that the results (7), (8),
and (9) are exact and independent of any capillary-wave
model. At the same time, those equations are simple state-
ments of the relationship between measurable quantities
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and the direct correlation function C � �R�. Without know-
ing anything about the latter, those relationships are empty
as far as predicting actual dependences on thermodynamic
quantities such m and T and external variables such as g.
Our purpose below is to show that with the use of the stan-
dard theory of critical phenomena and the renormalization
group [25–27], adapted to the present case, one can fill the
gap and obtain the dependence on gravity.

For vanishing gravity, the transverse direct correlation at
zero momentum, C̃ �0�, vanishes; cf. Eq. (7). This is the
equivalent in usual critical phenomena of saying that the
inverse susceptibility vanishes at the critical point [25,26].
The critical point is thus identified as the value g � 0.
However, this does not imply that gravity is the equivalent
of the temperature difference from the critical temperature
jT 2 Tcj. The analogy is rather that gravity g, besides
some constants, is equivalent to the inverse susceptibility
x21. This means that near the critical point g � 0, there
exists a bare capillary-wave-like Hamiltonian of the form

Hcw �
Z

dd21R

∑
g0

2
j=z � �R�j2 1

a0

2
z 2� �R� 1

l

4!
z 4� �R�

∏
,

(10)

with the partition function given by

Z �
Z

D �z � �R��e2bHcw . (11)

Our main interest is to calculate, from Eq. (11), the corre-
lation function

H �j �R 2 �R0j� � �z � �R�z � �R0�� , (12)

whose inverse is the direct correlation function C � �R� (or
the two-point vertex function in the renormalization-group
language). In proposing the above form of the bare
capillary-wave Hamiltonian, Eq. (10), we point out that
there is no need to include quadratic terms beyond those al-
ready included [i.e., quadratic terms proportional to higher
derivatives of z � �R�]: those terms in the Hamiltonian can be
shown to be irrelevant, in the sense that do not modify the
critical behavior [25]. What is very important, and the nov-
elty of our proposal in the present problem, is the inclusion
of the term lz 4� �R�. This term in the Hamiltonian will give
rise to terms of all orders in the correlation function C � �R�.
Clearly, if l is zero, one recovers the Gaussian model,
then g0 � g the actual surface tension, a0�2 � Drmg, and
all the higher order terms such as k vanish. Thus, it is the
lz 4� �R� term which makes the calculation different. The
physical motivation to include this contribution is the ap-
pearance of the fourth order term in the cost in grand poten-
tial due to a surface fluctuation, Eq. (1). In other words, the
expression for the partition function, Eqs. (10) and (11),
is the simplest one that follows from considering the low-
est nontrivial contributions to DV. With this calculation
we will find approximate expressions for the measurable
quantities that necessarily depend on the parameters of the
bare model, but as we shall see, the dependence on gravity
will also be found, which is our goal here.

Using standard renormalization-group calculations
[25,27] one can find, for arbitrary dimension, the renor-
malized N-vertex functions. Our interest now is the two-
point function, which can be shown to be

C̃R� �Q� � g0�kj�221gf�l���k2 1 �kj�2Q2

2 �kj�4kbQ4 1 . . .� , (13)

where j is the correlation length, and whose dependence
on g is found below. k is the arbitrary renormalization
scale. Up to two loops one can express gf�l��, the anoma-
lous dimension exponent evaluated at the fixed Ising point,
as [27]

gf�l�� �
�5 2 d�2

54
. (14)

For simplicity, and to follow the usual nomenclature, we
shall now call the exponent h � gf�l��. The fourth order
coefficient kb can be calculated and yields

kb �

√
2

27k2G2� 52d
2 �

!
�4p�d21I0 , (15)

where I0 is the convergent, adimensional, integral

I0 �
Z

dd21q dd21p
1

�p2 1 1� �q2 1 1� ��p 1 q�2 1 1�3 .

(16)

Again, if in the Hamiltonian l is set equal to zero, one
obtains kb � 0.

We wrote Eq. (13) in such a way to highlight the scal-
ing form of the height-height correlation function. Namely,
we find that, as expected [2,9], such a function scales as
C � C � �R�j�. However, j does not equal the classical
capillary length unless h � 0. The existence of the latter
anomalous dimension is in agreement with the scaling hy-
pothesis proposed by Romero-Rochín, Varea, and Robledo
[9,20].

With the above results, we are now in a position to make
contact with the exact results previously found. First, we
make the main identification, by equating the renormal-
ized vertex function C̃R�Q � 0�, Eq. (13), with the actual
transverse direct correlation function C̃ �Q � 0�, Eq. (7).
One obtains

Drmg � g0�kj�221hk2. (17)

The principal result here is that we find the dependence of
the correlation length j on gravity. That is,

j 	 g21��22h�. (18)

Needless to say, from Eq. (17) one sees that if h � 0, j

equals the classical capillary length.
With the identification of the correlation length,

Eq. (18), we can now predict the scaling dependence on
gravity of the measured surface tension, Eq. (8), and the
bending rigidity Eq. (9). The surface tension is

g � g0�kj�h 	 g2h��22h�. (19)
2371
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This result may appear quite surprising since it shows that
as gravity vanishes the surface tension diverges [24], thus
indicating that the free energy does not favor large undu-
lations of the surface. However, the bending rigidity also
diverges and it is negative [21],

k � 2g0�kj�21hkb 	 2g2�21h���22h�. (20)

A negative bending rigidity favors large curvature of the in-
terface. Moreover, as g vanishes, k grows faster than g such
that large undulations of the surface may result. This is cer-
tainly a physical argument supporting the expected fact that
as g vanishes the interface becomes wider and unstable, as
the classical capillary-wave model suggests. However, as
gravity becomes even smaller, the higher order terms in the
transverse correlation function C̃ �Q� are more and more
relevant, so that at g � 0, the renormalization-group cal-
culation indicates the well-known singular behavior [25],
C̃ �Q, g � 0� 	 Q22h , that prevents the expansion in
powers of Q and, therefore, the definition of g and k.

For small gravity the present results could be experi-
mentally tested. It appears, however, that in the current
microgravity experiments [28] the conditions are such that
the liquid-vapor states obtained are in the form of drops of
one phase on the other. To test these predictions the planar
interface should remain pinned, while the size of the sys-
tem should be made longer than the expected correlation
length j at the given value of gravity, in order to simulate
the infinite size of the system that this analysis requires.
For d � 3 the surface is two dimensional and the exact
Ising result predicts h � 1�4. Of course, this dependence
may be tested only within the Ginzburg region; outside it,
mean field is valid, then g is constant, and k, although
finite, becomes an irrelevant quantity in determining the
behavior of the interface at small values of gravity.

Finally, if as the classical capillary-wave model suggests
[1], one identifies the square of the width of the interface
as the value of the height-height correlation function at
�R � 0, namely w2 � H �0� [cf. Eq. (12)], the present
scaling law predicts that the width diverges as w2 	
j32d2h for d , 3. Since the correlation function H �0�
appears finite for d $ 3, one cannot conclude how the
width of the interface diverges as gravity vanishes [9].
On the other hand, if the classical capillary-wave model
is correct down to arbitrarily small values of g, then one
finds for d � 3 the well-known logarithmic divergence in
terms of the capillary length, w 	 ln�Lc� [1]. This would
mean, however, that the critical behavior of the interface
is always of the mean-field type, a result that should have
to be experimentally verified.
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