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Ab Initio Structure Determination of Icosahedral Zn-Mg-Ho Quasicrystals
by Density Modification Method
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A novel density modification method is applied for the first time to phase reconstruction of x-ray single
crystal data of quasicrystals. The structure of icosahedral Zn-Mg-Ho quasicrystals has been determined
by means of this ab initio structure determination within a framework of a 6D description. The location,
size, and shape of the occupation domains are deduced. The suggested Ho sites in the 3D structure
are consistent with the results of magnetic diffuse scattering [T. J. Sato et al., Phys. Rev. Lett. 81, 2364
(1998)].
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Recently, a new group of stable icosahedral quasicrys-
tals (i-QCs) [1], classified as the face-centered Frank-
Kasper type, was found in the Zn-Mg-R (R � Gd, Tb, Dy,
Ho or Er, and Y) system [2]. These QCs are unique, since
4f-electron magnetic moments are localized on the rare
earth sites. The Q dependence of (anisotropic) magnetic
diffuse scattering, observed in the i-ZnMgR [3,4], reflects
short-range correlations of the spin system in the quasiperi-
odic structure. Hence, the structure as well as magnetic
properties of this quasicrystal has attracted considerable
interest [5]. Structural studies of i-ZnMgR suggest a com-
pletely different structure from previously known i-QCs
[6,7]. However, the detailed structure is still unknown.
In addition, there is no available approximant crystal for
i-ZnMgR to guess its local structure.

The quasicrystal structure is simply represented by a 3D
section of an appropriate nD (n $ 4) crystal (the section
method) [8–10]. Within this widely accepted framework,
the i-QC structure is described as a 6D crystal with occu-
pation domains (ODs) extended to the 3D internal space
[10]. Therefore, once a 6D structure is determined, atomic
arrangement of i-QC in 3D external space is specified. Al-
though a set of 6D indexed reflections is obtained from
diffraction experiments, it is not an easy task to deter-
mine the 6D structure, because the so-called “phase prob-
lem” must be solved [11]. There is no direct method
for QCs which allows a routine structure determination in
conventional 3D crystals [11], although its generalization
to 6D was discussed based on Sayre’s equation [12]. So
far, several attempts to solve the problem for QCs have
been mainly focused onto the use of the Patterson function
[13], together in some case with contrast variation [14]
and the internal space dependence of the structure fac-
tors [15,16]. When the structure of approximant crystal
that has similar composition as QC is known, the phase
of structure factors in QC can be deduced as demonstrated
in i-AlCuLi [17]. The maximum-entropy method (MEM)
has also been applied to QC structure analysis [18]. How-
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ever, since the MEM itself needs an initial model to phase
the structure factors, it was utilized as a kind of refinement
method rather than a phase reconstruction method.

In this Letter, we report on the direct structure deter-
mination of i-Zn60Mg31Ho9, by applying the low density
elimination (LDE) method [19], which is an ab initio struc-
ture determination method based on a density modification
approach in the real space. Recently, a similar approach,
but based on a different principle, to solve the phase prob-
lem has been proposed [20]. However, this is the first
attempt to solve the phase problem of unknown real QC
structure. The location, size, and shape of the ODs in
the 6D unit cell are obtained without any model structure.
Moreover, the determined structure clarifies the Ho sites in
the 3D structure for the benefit of its large atomic number
(Z � 67).

A single crystal sample of i-Zn60Mg31Ho9 was taken
from well characterized large single grain obtained by the
Bridgman method [21]. The sample was polished into a
sphere with a diameter of 238 mm. Intensity data were
collected on a conventional four-circle diffractometer
with graphite-monochromatized MoKa radiation (l �
0.7107 Å) from an x-ray tube. The lattice constant of a
face-centered 6D cubic lattice was determined as a6D �
14.623 Å from selected 25 reflections, which corresponds
to icosahedral lattice parameter a � a6D�

p
2 � 10.340 Å

in the external space. The reflections were corrected appro-
priately for Lorentz, polarization, and absorption factors.
The number of 1184 reflections in total was observed
from which 326 independent reflections [Fo . 3s�Fo�,
Qk # 8.90 Å21, and Q� # 1.57 Å21 in units of 2p�a]
were obtained, where the subscripts k and � represent its
external and internal space components, respectively.

Shown in Fig. 1 is the 6D Patterson function (PF) of
i-Zn60Mg31Ho9 which represents a rather complicated
structure; a feature like modulated strings is observed along
the r� direction. (Hereafter, a primitive cell is employed
for structural description. Therefore, even- and odd-parity
© 2001 The American Physical Society
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FIG. 1 (color). The rational cut of the 6D Patterson function
in a plane containing a fivefold axis in both external (rk) and
internal (r�) spaces. A F denote positions of e.V, o.V, e.B, o.B,
e.E, and o.E. The outermost rectangle shows a face-centered 6D
unit cell. Dashed lines represent a primitive unit cell.

cells are not equivalent to each other, while fractional
coordinates are taken with the original face-centered
cell.) Correlations are seen at even and odd vertices (la-
beled, respectively, as e.V:[000000] and o.V:[100000]�2),
body centers (e.B:[111111]�4 and o.B:[311111]�4), and
edge centers (e.E:[322222]�4 and o.E:[122222]�4). This
strongly suggests that large ODs are located at all the sites.
However, direct interpretation of the PF seems to be diffi-
cult. Our primary motivation of the present study is thus
to overcome such difficulties. It is interesting to compare
this PF with that of, e.g., i-AlPdMn, which has three large
independent ODs (located at e.V, o.V, and o.B in our
notation) in the 6D unit cell [16]. This simple 6D structure
shows well separated blobs of high intensity region even in
the PF. In such a case, the Patterson analysis is effective;
then by assuming the position and size of ODs, it can be a
starting point for further analysis.

The phase reconstruction by the direct methods is done
exclusively in the reciprocal space by applying mathe-
matical relationships between phases, which is based on
the properties of electron density in a crystal structure:
atomicity and positivity [11]. The LDE method performs
calculation so as to comply with these conditions in the real
space [19]. This approach has been extended to cover nD
crystals and then tested and validated for its effectiveness
with several quasicrystals in both calculated and observed
data sets [22,23]. The QC structure as nD crystal is rather
simple, since it consists of discrete ODs. This can be con-
sidered as atomicity in the nD space. In the LDE method,
initial electron density is calculated from a set of structure
factors with completely random phases; then the density is
modified repeatedly by a function

r0�r� � r�r�
Ω
1 2 exp

∑
2

1
2

µ
r�r�
0.2rc

∂2∏æ
r�r� $ 0 ,

r0�r� � 0 r�r� , 0 ,
where r�r� and r0�r� represent prior and modified density
at position r and rc is an average density in the nD unit
cell. This function removes negative density and sharp-
ens peaks and the procedure is continued until the average
change of phases becomes less than a predetermined limit
(normal value is 0.5±). It should differentiate between the
LDE method and the similar method recently proposed by
Elser [20]. The latter changes phases directly so as to ac-
complish small global minimum densities in the unit cell,
where the densities are evaluated at randomly chosen po-
sitions. In the LDE method, the structure solution is ob-
tained as a result of multisolution calculation. The number
of trials to get the solution is comparatively small. The so-
lution can easily be found in the results and confirmed by
further analysis. The reconstructed phase set by the LDE
method always contains wrongly assigned phases which
make the resultant density distribution somewhat obscure.
However, it is not the problem to deduce location, size,
and shape of the ODs. For a centrosymmetric model of
i-AlPdMn [24], 472 out of 659 reflections (it includes all
strong reflections having Q� . 0.4 Å21 and amplitude ra-
tio Fo�Fo,max . 0.06) were assigned correctly [22,23].

Structure determination of i-ZnMgHo has been per-
formed by applying the 6D LDE method with �14�6 grid
points using 238 independent reflections (Qk # 8.90 Å21

and Q� # 1.50 Å21). An optimized fast Fourier trans-
form routine was utilized for the 6D Fourier transform
[25]. Only the center of symmetry was assumed and 28
resultant densities were identical out of 100 trials. We are
convinced that these densities are the solutions by subse-
quent analysis. Figure 2 shows the 2D cut of the 6D den-
sity calculated with the reconstruct phases. We see blobs
of the high density region, which represents a section of
OD, at all the sites (A F) indicated in the figure. The
largest and densest OD is situated at o.B, which is quite
different from that located at e.B. This structure is dif-
ferent from that of i-Zn50Mg42Y8 reported previously [6].

FIG. 2 (color). The rational cut of 6D density [not including
F�000000�] calculated with reconstructed phases in a plane con-
taining a fivefold axis in both external (rk) and internal (r�)
spaces. The meaning of A F is the same as those described
in Fig. 1.
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Moreover, it should be noticed that the center of the ODs
at e.E and o.E are shifted from ideal edge-center positions
along the r� direction. The existence of such ODs was not
expected in the previous study and not treated in the course
of the structure analysis of i-Zn47Mg45Ho8, appropriately
[7]. The ODs at e.E and o.E are related by an inversion
operation. Therefore, the structure of i-ZnMgHo is char-
acterized by the five independent ODs in the face-centered
6D unit cell, in contrast to i-AlPdMn, where three ODs are
independent.

Figure 3 shows the cross sections of the ODs taken
along the plane perpendicular to a twofold axis in the r�

space. The ODs at e.V and o.V have approximately the
same size [Figs. 3(a) and 3(b)], although a more steep pro-
file is recognized for the latter compared with the former.
An elongated shape along fivefold axes can be seen for the
OD at e.B [Fig. 3(c)]. Note that these three ODs show al-
most the same peak height. Again we see large and dense
OD at o.B [Fig. 3(d)]. Its peak height is roughly twice as
high as those observed in the ODs at e.V, o.V, and e.B.
This strongly suggests that Ho atoms concentrate on the
OD at o.B, which is consistent with previous study [7].
The OD at e.E does not show significant symmetry in this
cross section, because the center of this OD is not located
on the edge-center position as mentioned above.

The ODs at edge-center positions are quite unique. It
can be considered that these ODs belong to either e.B or
o.B. Since the OD at o.B is large enough, we consider that
these ODs belong to the e.B. As a result, one obtains a
large OD at e.B, whose size is comparable with that of
o.B. In this case, one should take into account a posi-
tional shift of

p
�18 2 11t���2 1 t� �a�2� � 0.61 Å (t

for golden mean) of the outward ODs at e.B along the rk
space. Twelve equivalent ODs (from edge center position)
surround the e.B position. They are located at positions
along fivefold axes. Thus, the electron density elongated
along the fivefold axis in Fig. 3(c) seems to be related with
those ODs. The large ODs at body center positions have
been inferred previously [7]. In the previous model, un-
physically short interatomic distance (�0.61 Å) remains
in the rk space. Such a short distance universally appears,
if an overlap exists when the ODs located at edge centers
and body centers are projected onto the r� space. The de-
termined structure in the present study shows almost no
overlap between those ODs as seen in Fig. 2, suggesting
the correct location of the ODs at edge-center positions.
Therefore, modeling with this knowledge would avoid such
unreasonably short interatomic distance in the rk space.

In order to understand the Q dependence of magnetic-
diffuse scattering in i-ZnMgHo [4], interatomic distances
between Ho atoms and their directions in the rk space are
important. As seen in Fig. 3, it is considered that most
of Ho concentrates on the OD at o.B, since Ho is the
heaviest element in this structure, whose atomic number
is 2 times and 5 times as large as those of Zn and Mg, re-
spectively (see Fig. 4). However, the size of the OD seems
obviously too large to expect that the OD is occupied by
238
FIG. 3. Section of the ODs in the internal (r�) space (unit is
taken by the lattice constant a). (a)–(e) correspond to the ODs
at e.V, o.V, e.B, o.B, and e.E. Note that the OD at o.E is obtained
by applying the inversion operation to that of e.E.

only Ho. On the other hand, if the Ho occupy the out-
side of the OD, a dent is probably observed at the center.
Since any trace of it is not seen in Fig. 3(d), we note that
the Ho occupies the center of the OD at o.B. By tak-
ing a 3D section of the determined 6D structure under the
above consideration, the Ho sites can be specified in the
rk space. The radius of the OD is expected to be smaller
than

p
�2 1 3t���2 1 t� a � 7.12 Å, by considering the

chemical composition of i-ZnMgHo. Hence, we obtain
5.44, 7.69, and 8.80 Å as first to third nearest-neighbor
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FIG. 4. A 2D cut of the 3D electron density of i-ZnMgHo in
the external (rk) space perpendicular to a twofold axis. The solid
and broken lines represent two dominant short Ho-Ho distances
(5.44 and 8.80 Å) and the network of Ho atoms comes from OD
located at o.B.

(NN) distances between Ho atoms. They correspond to the
rk component of 6D lattice vectors, e.g., �0, 0, 0, 1, 0, 1��2,
�21, 0, 1, 0, 21, 1��2, and �0, 0, 1, 0, 0, 21��2. The first
and third distances are dominant in the structure. Indeed,
strong antiferromagnetic correlation was observed for Er
and Ho compounds with these correlation lengths [3,4].
Moreover, their direction in the rk space explains observed
anisotropy of correlations well, if antiferromagnetic corre-
lation is assumed for those Ho atoms [4,26]. The second
NN distance is minor since this distance appears less fre-
quently compared with the first and third NN distances,
and is dependent on the limit radius of the OD.

The detailed shape of ODs and distribution of atomic
species in them should be specified by a model fitting,
e.g., polyhedral OD modeling [10], but it is not the subject
of the current study. However, it should be mentioned
here that a crude model fitting with ODs approximated by
spherical shells gave a consistency with the above results,
which gave a weighted R factor of 0.16 for all independent
reflections. Further study about the construction of model
structure and refinement of it is actually now in progress
and will be published in a forthcoming paper.

The authors thank Akira Sato for technical support on
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