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Discrete Solitons and Breathers with Dilute Bose-Einstein Condensates
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We study the dynamical phase diagram of a dilute Bose-Einstein condensate (BEC) trapped in a pe-
riodic potential. The dynamics is governed by a discrete nonlinear Schrödinger equation: intrinsically
localized excitations, including discrete solitons and breathers, can be created even if the BEC’s inter-
atomic potential is repulsive. Furthermore, we analyze the Anderson-Kasevich experiment [Science 282,
1686 (1998)], pointing out that mean field effects lead to a coherent destruction of the interwell Bloch
oscillations.
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Localization phenomena are ubiquitous in physics and
in biology [1]. Intrinsically localized excitations, as soli-
tons (shape preserving) and breathers (characterized by
internal oscillations), are important channels for energy
transport in nonlinear media, such as optical fibers and
waveguides [2], polaronic materials [3], and biological
molecules [4]. Intense theoretical research is now focusing
on the existence of solitons and breathers in a lattice [of-
ten named discrete solitons and discrete breathers (DSB)
[2] ], such as those appearing in quantum systems governed
by a discrete nonlinear Schrödinger equation (DNLSE)
[5–7]. Current approaches include the search for exact
solutions in some limits [8]; effective (point) particle and
variational approaches [9–11]; perturbation around the lin-
earized case and, of course, numerical solutions [2,5]. Al-
though intensely studied, DSB’s have been experimentally
observed only quite recently in superconducting ladders
of Josephson junctions [12], in antiferromagnet systems
[13], in optical waveguides [14], and in low-dimensional
materials [15].

The discrete solitons/breathers are characterized by a
dynamical, self-maintained energy localization, due to
both the discreteness and the nonlinearity of the underlying
equations of motion. The discreteness provides a band
structure of the excitation spectrum, while the nonlinearity
allows for the tuning of the DSB energy outside the band.
The finite energy gap guarantees the (meta-)stability of
the DSB’s. These, obviously, have a different nature than
the “Anderson localizations,” created by impurities or im-
perfections of the lattice [16]; the incorporation of disor-
der into nonlinear excitations and the tracing out of its
dynamical effects are also important theoretical problems.

Bright solitons can occur in spatially homogeneous, di-
lute Bose-Einstein condensates (BEC) with an attractive
interatomic interaction (s-wave scattering length a , 0)
[17,18]. Dark solitons, propagating density dips, have been
predicted and experimentally observed in BEC’s with a re-
pulsive interaction (a . 0) [19]. The dynamics of a BEC
trapped in a spatially periodic potential [20–22], on the
other hand, can be mapped, in the tight binding approxi-
mation, to a DNLSE. Bright discrete solitons and breathers
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can be created in DNLSE even with a repulsive BEC in-
teratomic interaction.

In Ref. [23] a one-dimensional, vertical optical array
was created by two counterpropagating laser beams. A
weakly interacting Bose-Einstein condensate was trapped
in �30 wells, situated at the antinodes of the standing op-
tical wave. Each well contained approximately 1000 con-
densate atoms, with the peak densities matching a Gaussian
profile. The lowest Bloch band dynamics of this system
maps on a DNLSE, obtained by discretizing the Gross-
Pitaevskii equation (GPE) governing the condensate dy-
namics in the periodic potential. Since the array is oriented
vertically, the atoms undergo coherent Bloch oscillations,
driven by the interwell gravitational potential. At the edge
of the Brillouin zone, a fraction of atoms can Zener tunnel
in the higher energy band which, in this specific case, is in
the continuum. A coherent leakage from the trap was ob-
served at each Bloch period. However, an increase of the
on-site particle densities washed out the coherent signal.
This has been understood as a drift of the relative phases
between wells due to mean field effects [23].

In this Letter we study the DNLSE using a varia-
tional approach: we show that a (complex) Gaussian
variational ansatz (describing a soliton/breather profile,
combined with a Lagrangian optimization) yields a
coupled dynamics of the profile parameters. A variety of
discrete solitons/breathers is investigated analytically and
compared with numerical calculations. This comparison
is surprisingly successful in describing even details of
the quite complex dynamical and collisional behavior.
Stability phase diagrams for such states are obtained by
inspection of the profile dynamics equations.

The full Bose condensate dynamics satisfies the GPE
[24]:

ih̄
≠F

≠t
� 2

h̄2

2m
=2F 1 �Vext 1 g0jFj2�F , (1)

where Vext is the external potential and g0 �
4p h̄2a

m , with
m the atomic mass. For a tilted trap as in [23] the external
potential is given by the sum of the gravitational potential
and the laser field
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Vext��r� � mgz 1 UL�x, y� sin2�2pz�l� , (2)

where l is the wavelength of the lasers (the spacing in the
lattice is l�2) and UL�x, y� is determined by the transverse
intensity profile of the (nearly Gaussian) laser beams. In
[23] l � 850 nm and the 1�e2 radius of the transverse
profile is �80 mm, an order of magnitude larger than the
transverse radius of the condensate. The well depths scale
linearly with the intensity of the beam. At the center of
the beam the trap depths are 1.4ER where ER �

h̄2k2

2m is
the recoil energy (k �

2p

l ).
In the tight binding approximation the condensate order

parameter can be written as

F��r, t� �
p

NT

X
n

cn�t�f��r 2 �rn� , (3)

where NT is the total number of atoms and f��r 2 �rn�
is the condensate wave function localized in the trap
n with

R
d �r fnfn11 � 0, and

R
d �r f2

n � 1. cn �p
rn�t� eiun�t� is the nth amplitude (rn � Nn�NT , where

Nn and un are the number of particles and phases in the
trap n). Replacing the ansatz (3) in (1) we find that the
GPE reduces to a DNLSE:

i
≠cn

≠t
� 2

1
2

�cn21 1 cn11� 1 �en 1 Ljcnj
2�cn ,

(4)

where en �
1

2K

R
d �r � h̄2

2m � �=fn�2 1 Vextf
2
n�, L �

g0NT

2K

R
d �r f4

n, and K � 2
R

d �r � h̄2

2m
�=fn ? �=fn11 1

fnVextfn11�; the time has been rescaled as t !
h̄

2K t.

Equation (4) is the equation of motion �cn � ≠H

≠�ic�
n � , where

H is the Hamiltonian function

H �
X
n

∑
2

1
2

�cnc�
n11 1 c�

ncn11� 1 enjcnj
2

1
L

2
jcnj

4

∏
(5)

with ic�
n , cn canonically conjugate variables. Both

the Hamiltonian H and the norm
P

n jcnj
2 � 1 are

conserved.
To analyze the Anderson-Kasevich experiment, we

study the dynamical evolution of a Gaussian pro-
file wave packet, which we parametrize as c

n
V �t� �

p
k exp	2 �n2j�2

g2 1 ip�n 2 j� 1 i
d

2 �n 2 j�2
, where
j�t� and g�t� are, respectively, the center and the width
(in the lattice units) of the density rn � jcnj

2, p�t� and
d�t� their associated momenta, and k�g, j� a normaliza-
tion factor. The wave packet dynamical evolution can be
obtained by a variational principle from the Lagrangian
L �

P
n i �cnc�

n 2 H , with the equations of mo-
tion for the variational parameters qi�t� � j, g,
p, d given by d

dt
≠L

≠ �qi
�

≠L

≠qi
. After some algebra

we obtain [25] L � p �j 2
g2 �d

8 2 �L��2
p

p g�� 1

cosp e2h 2 V �g, j�, where h �
1

2g2 1
g2d2

8 and V �
2354
k
R`

2` dn ene2�2�n2j�2�g2�. The variational equations of
motion become (

�p � 2
≠V
≠j ,

�j � sinp e2h ,
(6)

(
�d � cosp� 4

g4 2 d2�e2h 1
2L

p
p g3 2

4
g

≠V
≠g ,

�g � gd cosp e2h ,
(7)

with the pairs j, p and g2

8 , d which are canonically con-
jugate dynamical variables with respect to the effective
Hamiltonian

H �
L

2
p

p g
2 cosp e2h 1 V �g, j� . (8)

The wave packet group velocity is given by yg � ≠H
≠p �

�j � tanp�m� with an inverse effective mass �m��21 �
≠2H
≠p2 � cosp e2h . The quasimomentum dependence of the
effective mass allows a rich variety of dynamical regimes.
Solitonic solutions with a positive nonlinear parameter
L . 0, for instance, are allowed by a negative effective
mass. A regime with a diverging effective mass m� ! `

leads to a self-trapping of the wave packet.
In the following we will study the dynamical regimes of

Eq. (4) in two particular cases. We first consider a tilted
(washboard) periodic potential describing the vertical op-
tical trap created in the Anderson-Kasevich experiment. In
particular, we will show that nonlinear effects tend to de-
stroy the Bloch oscillations, consistently with the experi-
mental results. The external potential for the tilted trap is
given by Eq. (2) with en � vn where v �

mgl�2
2K . We

find V � vj and �p � 2v [26].
Then we consider the case of a horizontal array, in which

gravitation provides only a constant energy shift, with �p �
0. We will classify four different regimes which include
discrete breathers and solitons.

Tilted trap.— It is well known that single atoms in a
tilted washboard potential oscillate among sites at the
Bloch frequency. This regime is described by Eqs. (6)
and (7) with L � 0 (corresponding to a negligible mean
field condensate interaction). This is, precisely, the regime
investigated in [23] in which a coherent output was
observed. Indeed a variational estimate gives L � 0.5
and v � 2 (the scaled time is in units of h̄�2K �
0.35 ms). In this limit the equations of motion can
be solved exactly giving p�t� � 2vt 1 p0, j�t� �
2A�cosp0 2 cos�vt 2 p0��, g2�t� � 4A2 logAv 3

	cos�2�vt 2 p0�� 2 cos2p0 2 4 sinp0 sin�vt 2 p0� 2

4 sin2p0
 1 g
2
0 , and d�t� � 2

8A logAv�sin�vt2p0�1sinp0�
g2�t� ,

where A � 2H0�v cosp0, d�0� � d0 � 0, and H0 is the
(conserved) initial energy. In the inset of Fig. 1 we show
that the Bloch oscillations described by the variational
ansatz (solid line) are in excellent agreement with the
full numerical solution of the DNLSE (dashed line). The
numerical average position is defined as

P
n njcnj

2.
The effect of nonlinearity on the Bloch oscillations is

dramatic. This has been studied experimentally in [23]
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FIG. 1. Coherent destruction of Bloch oscillations: numerical
(dashed line) and variational (solid line) average positions of the
density in the tilted trap (v � 2, L � 10 and initial p0 � 0,
d0 � 0, g0 � 10). Inset: Bloch oscillations for L � 0.

by increasing the density in each well, and observing a
degradation in the interference pattern. With L fi 0 we
have

j̈ 1
Ld

2
p

p g
�j 1 v2j � vH0 2

Lv

2
p

p g
. (9)

Equation (9) displays an effective damping term propor-
tional to the velocity �j. We stress that the dynamics
is fully Hamiltonian, and real dissipative processes are
absent. For t ! `, g tends to a constant value gfin

and d � �2L��
p

p g
3
fin��t, so the term Ld has the cor-

rect positive sign (for large t). The apparent damping is
the consequence of a diverging effective mass of the wave
packet m� � e�L2�2pg

4
fin�t2

, which stops the Bloch oscilla-
tions. This effect manifests, in the numerical analysis of
Eq. (4), as a distortion of the on-site phases. In Fig. 1
(solid line) we show the variational Bloch dynamics with
a nonlinear parameter L � 10 and initial values j0 � 0,
p0 � 0, and d0 � 0. The oscillation roughly decreases as
j�t� � 2A�1 2 e2��L2t2���2pg

4
fin�� cosvt�. The dashed line

shows the full numerical solution of the DNLSE, in good
agreement with the analytical result (solid line). The dis-
crepancy at t . 10 is due to the breaking of the Gaussian
wave packet in the numerical simulation.

Untilted trap.—The momentum p�t� � p0 is con-
served. We note that the equations of motion are invariant
with respect to the replacement L ! 2L, p0 ! p0 1 p ,
and t ! 2t. In Fig. 2 we report the dynamical phase dia-
gram as a function of L versus cosp, for L . 0 and with
initial values j0 � 0 and d0 � 0. This phase diagram
has been calculated analytically from Eqs. (6)–(8) and
checked numerically. In the region cosp . 0 there are
two distinct regimes. When H0 . 0, g�t� , gmax: this is
the self-trapped regime in which the boson wave packet
remains localized around a few sites. The self-localization
−1.0 −0.5 0.0 0.5 1.0
cos p

0.0

1.0

2.0

3.0

4.0

5.0

Λ

breather

diffusion

soliton

self−trapping

diffusion

FIG. 2. Dynamical phase diagram in the untilted trap: L vs
cosp, for L . 0 and with initial j0 � 0 and d0 � 0.

is a genuine nonlinear effect, characterized by a diverging
effective mass. In particular, the self-trapped wave packet
cannot translate along the array: this is a major difference
with respect to solitonlike solutions. The limit values for
t ! ` are g ! L�2

p
p H0, d ! `, and �j ! 0. We

note that a nonlinear self-trapping occurs also in a two-site
problem [27].

A diffusive regime occurs when 2 cosp0 , H0 # 0. In
this case g�t ! `� ! ` and �j � 2H0� tanp0 � const.
The transition between the two regimes occurs at
Lc � 2

p
p g0 cosp0e21�2g

2
0 . With L . Lc, the ratio

between the initial value of the width g0 and the limit
width gmax�t ! `� is given by

g0

gmax
�

L 2 Lc

L
. (10)

In Fig. 3 we plot g0�gmax vs L�Lc while in the inset we
report the variational and numerical values of the width of
the density vs L�Lc after a time t � 10 (scaled units).
The discrepancy at large L�Lc is due to a slight deviation
of the numerical density profile from a Gaussian shape.
We checked the stability of self-trapping, also considering
different initial forms of the wave packet.

In the region cosp , 0 the self-trapping condi-
tion is given by H0 . jcosp0j: in this case Lc �
2
p

p g0jcosp0j �1 2 e21�2g
2
0 �. A soliton solution can be

determined by imposing �g � �d � 0. We find Lsol �
2
p

p
jcosp0j

g0
e21�2g

2
0 . For L � Lsol the center of the wave

packet moves with a constant velocity �j and its width
remains constant in time. For Lc , L , Lsol, j ! `

while g�t� oscillates, corresponding to a breather solution.
The numerical solution of Eq. (4) confirms the variational
predictions. In Fig. 4(a) we report the numerical density
profile for L in the breather region with p0 � 3p�4;
in Fig. 4(b) the numerical density profile is drawn for
the same L and p0 � p�4: the change of the sign of
cosp gives a breather solution in the first case, and the
spreading of the density in the second one. In Figs. 4(c)
2355
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FIG. 3. Universal curve for g0�gmax vs L�Lc as in Eq. (10).
The inset shows the variational (solid line) and numerical
(circles) widths of the density vs L�Lc after the time t � 10,
scaled units (initial values: p0 � 0, d0 � 0, and g0 � 7).

and 4(d) we show that for L � Lsol the soliton after
hitting a wall rebounds and regains its shape.

In conclusion, we have studied the dynamics of a dilute
Bose condensate trapped in a periodic potential. We have
analyzed the Anderson-Kasevich experiment, pointing out
that mean field effects lead to a coherent destruction of
the interwell Bloch oscillations. We have shown that in-
trinsically localized excitations, such as discrete breathers
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FIG. 4. (a) Numerical density profiles calculated at different
times (t � 0, 50, 100, . . . , 400). The value of L is inside the
breather region of the dynamical phase diagram (p0 � 3p�4,
g0 � 10, and L � 0.24); (b) the same parameters as in (a), but
for p0 � p�4; (c) width (dotted line) and average position (solid
line) calculated numerically for L � Lsol and p0 � 3p�4 in a
finite array of 73 sites (the soliton hits a wall); (d) numerical
density profile for t � 0, 50, 100, 150, and 200 for the soliton
described in (c).
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and solitons, can exist also with a repulsive interatomic
potential by studying analytically their dynamical phase
diagram.
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