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Ballistic-Diffusive Heat-Conduction Equations
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We present new heat-conduction equations, named ballistic-diffusive equations, which are derived from
the Boltzmann equation. We show that the new equations are a better approximation than the Fourier
law and the Cattaneo equation for heat conduction at the scales when the device characteristic length,
such as film thickness, is comparable to the heat-carrier mean free path and/or the characteristic time,
such as laser-pulse width, is comparable to the heat-carrier relaxation time.
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It is well known that the diffusion heat conduction
equation based on the Fourier law, q � 2k≠T�≠x,
leads to the unreasonable result that heat propagates at
an infinite speed. To resolve this dilemma, the Cattaneo
equation, t≠q�≠t 1 q � 2k≠T�≠x, was proposed [1].
This leads to a wave type of heat conduction equa-
tion called the telegraph equation or hyperbolic heat-
conduction equation (see Ref. [2] for a comprehensive
review). A mechanism that is not included in the hyper-
bolic equation is the ballistic transport, which becomes
important when the sample size is smaller than the mean
free path or the temperature gradient becomes large.
A nonlocal heat-conduction model was developed by
Mahan and Claro based on the steady-state Boltzmann
equation [3]. The model, however, does not include
the retardation of heat carriers (electrons, phonons, or
molecules) due to their finite speed of propagation.
Joshi and Majumdar [4] compared the solutions of the
transient Boltzmann equation, the Fourier law, and the
Cattaneo equation for phonon heat conduction perpen-
dicular to a thin film plane. They concluded that neither
the Fourier nor the Cattaneo equation can represent well
the heat-conduction processes in small scale and/or fast
transient. The Boltzmann equation, even in its simplest
form, however, is difficult to solve because it involves
variables in both real and momentum spaces, as well as
time. In this article, we establish the ballistic-diffusive
heat-conduction equations and demonstrate that they are
a good approximation of the transient Boltzmann equa-
tion. Its advantage over the Boltzmann equation is that
only spatial coordinates and time are involved. Unlike
the Fourier law and the Cattaneo equation, the new set
of equations capture both the time retardation and the
nonlocal transport process, and thus can be applied to
fast heat-conduction processes and to small structures.
Yet these equations are simple enough that the existing
numerical tools can be readily applied for complicated
heat-conduction problems in small structures, as long as
the particle description is still valid.

Similar to previous treatments [3–5], our starting point
is the Boltzmann equation under the relaxation time
0031-9007�01�86(11)�2297(4)$15.00
approximation,
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≠t
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where f is the carrier distribution function, f0 is the equi-
librium distribution, v is the carrier group velocity, and t

is the heat-carrier relaxation time which usually depends
on the angular frequency v (or energy) of the heat carri-
ers. In theory, the relaxation time may also depend on the
wave vector (direction). In heat conduction, most theo-
retical treatment is based on isotropic scattering such that
consideration of the frequency dependence is sufficient.

The essence of the ballistic-diffusive approximation is to
divide the distribution function at any point into two parts,
f � fb 1 fm, as shown in Fig. 1. In this figure, fb at an
internal point along a specific direction originates from the
boundaries. In the course of traveling from the boundary

FIG. 1. In deriving the ballistic-diffusive heat-conduction
equations, local carrier distribution function f is divided
into two parts: fb originates from the boundary � fw� and
experiences outgoing scattering only, and fm originates from
inside the domain and is directed into the V̂ direction either
through scattering or through emission of the medium.
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to this point, some of the carriers are scattered and only
those remaining are included in fb . This part of carriers
is ballistic. The rest of the carriers at this internal point is
grouped into fm. These are the carriers that are scattered
or emitted into this direction from other internal points.
The distribution of these carriers is more isotropic than the
ballistic carriers from the boundary due to multiple scat-
tering or nearly isotropic emission. The philosophy is then
to treat this part of the heat carriers by the conventional
diffusion approach, as will be derived from the spherical
harmonic expansion of the distribution function fm. Such
an approach was successfully used for steady-state photon
transport [6,7]. With such a division of the local carrier
constitutions, the local heat flux and temperature are also
made of two parts, as will be given later. For the ballistic
part, we have

1
jvj

≠fb

≠t
1 V̂ ? =fb � 2

fb

jvjt
, (2)

and V̂ is the unit vector in the direction of carrier propa-
gation. A general solution for Eq. (2) is

fb�t, r, V̂� � fw�t 2 �s 2 s0��jvj, r 2 �s 2 s0�V̂�
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where fw is the value of the carrier distribution function
at the boundary point s0 along direction V̂; s 2 s0 is the
distance along the propagation direction. The boundary
value fw includes those reflected and also emitted carriers
at the boundary. The governing equation for fm is

≠fm

≠t
1 v ? =fm � 2

fm 2 f0

t
. (4)

As explained, fm includes scattered and emitted carriers
from the internal region into the specific direction being
considered. This part is more isotropic and will be treated
by the diffusion approximation. We introduce the spheri-
cal harmonic expansion for fm and maintain the first two
terms as an approximation, which is often used in solving
the Boltzmann equation for thermal radiation and neutron
transport [7],

fm�t, r, V̂� � g0�t, r� 1 g1�t, r� ? V̂ , (5)

where g1 is a vector that is related to the heat flux, and g0
is a scalar that represents the average of fm over all propa-
gation directions. The latter is related to the local internal
energy um and temperature Tm due to the diffusive part of
the carriers. Substituting Eq. (5) into Eq. (4), multiplying
the obtained equation by V̂ and integrating over the solid
angle of the whole space lead to [7]

1
jvj

≠g1

≠t
1 =g0 � 2

g1

L
, (6)

where L � jyjt is the mean free path. From the distribu-
tion function, we can calculate the heat flux and the internal
2298
energy as

q�t, r� �
1
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Z
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� qb�t, r� 1 qm�t, r� , (7)
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1
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where h̄ is the Planck constant divided by 2p and h̄v is
the energy of each carrier. The integration is performed
over the momentum space. We further introduce two tem-
peratures Tb and Tm such that
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∂
, (9)

where T � Tm 1 Tb can be considered the local tempera-
ture. It should be reminded that, in the ballistic regime,
the statistical distribution of heat carriers deviates far from
equilibrium such that temperature cannot be defined in the
sense of equilibrium or local equilibrium. The local tem-
perature is best considered as a measure of the local in-
ternal energy [8]. Under the current approach, the local
internal energy is made of two parts: the ballistic part ub

from the boundary, and the diffusive part um from the in-
ternal region. Consequently, Tm and Tb are a measure of
the magnitude of these two internal energy constituents,
respectively.

Substituting Eq. (5) into the corresponding expression
for qm in Eq. (7) leads to

qm�t, r� � 1
3

Z
jvjh̄vg1D�v� dv , (10)

where D�v� is the density of states of carriers. In obtain-
ing Eq. (10), we have converted the integration over mo-
mentum space into the integration over frequency through
D�v�, and used the fact that the integration of v ? g0 over
the whole space angle is zero because it is an odd func-
tion. The factor of 1

3 in Eq. (10) is the standard kinetic
factor obtained after projecting the v2 in the direction of
heat flux.

Multiplying Eq. (6) by Ljyjh̄vD�v��3 and integrating
it over v yields

t
≠qm

≠t
1 qm � 2k=Tm , (11)

where t is an average of the frequency dependent re-
laxation time and k is the thermal conductivity, k �R

CvyL dv�3 � CyL�3, Cv is the specific heat of heat
carriers at frequency v, and C is the total specific heat.
The second equation for k further assumes that the nor-
mally frequency dependent mean free path L can be repre-
sented by an average value. In obtaining Eq. (11), we have
used the fact that

R
=g0Ljyjh̄vD�v� dv�3 � k=Tm.

Equation (11) is identical to the Cattaneo equation in
form. However, in the current model, qm represents only
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part of the heat flux while, in the Cattaneo equation, it
represents all the heat flux. Since the equation contains
both qm and Tm, we will use the energy conservation
equation to eliminate qm:

2= ? q 1 �qe �
≠u
≠t

, (12)

where �qe is heat generation per unit volume due to ex-
ternal heat sources. Substituting Eqs. (7) and (9) into
the above equation leads to 2= ? qm 2 = ? qb 1 �qe �
C�≠Tm�≠t 1 ≠Tb�≠t�. Eliminating qm in this equation
and Eq. (11), we obtain the governing equation for the dif-
fusive component,
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µ
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≠t2 1
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1
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�qe 1 t
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≠t

∂
, (13)

where we have used the following relation, tC 3

�≠2Tb�≠t2� 1 C�≠Tb�≠t� � 2t≠�= ? qb��≠t, that can
be derived from Eq. (2) similar to the derivation of
Eq. (11). The major difference of Eq. (13) compared
to the hyperbolic heat-conduction equation is that an
additional ballistic term = ? qb appears in the equation.
These ballistic heat fluxes can be calculated from Eq. (3):
qb�t, r� �
1

4p

Z ∑Z
j vjh̄vD�v�fw�t 2 �s 2 s0��jvj, r 2 �s 2 s0�V̂� exp

µ
2

Z s
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jvjt

∂
cosu dV

∏
dv , (14)
and it depends only on the Tb values at the boundaries
through fw , which can be assumed to be a known quantity
when solving Eq. (13). In Eq. (14), u is the angle formed
between v and q, and V is the solid angle in space. We will
call Eqs. (13) and (14), together with the accompanying
heat flux and temperature definitions, the ballistic-diffusive
heat-conduction equations, or simply the ballistic-diffusive
equations.

We now discuss the boundary conditions for the
established equations. The formulation of the ballistic-
diffusive equations implies that all the heat carriers
originating from the boundaries be treated as the ballis-
tic components. These boundary heat carriers may be
emitted/transmitted from another medium or reflected
from the same medium. Since the boundary does not
contribute to the diffusive component, the diffusive heat
flux at the boundary is

qm ? n � 2
Z

V̂?n,0
h̄v�v ? n�fm d3v . (15)

Substituting Eqs. (5) and (10) into the above equation
yields

qm ? n � 2CyTm�2 . (16)

Substituting Eq. (16) into Eq. (11) leads to the following
boundary conditions for the diffusion components:

t
≠Tm

≠t
1 Tm �

2L

3
=Tm ? n , (17)

where we have used the kinetic relation k � CyL�3.
As an example, we apply the ballistic-diffusive equa-

tions to transient phonon heat conduction across thin films
of thickness L. The film is initially at a uniform tem-
perature T0. At time t, one of its surfaces is subjected
to a phonon flux at a temperature T1. Previously, Joshi
and Majumdar [4] compared the Boltzmann equation, the
Cattaneo equation, and the Fourier equation for the same
problem and concluded that neither the Fourier nor the
Cattaneo equation can be applied when the film thick-
ness is comparable to the phonon near free path. Details
of the computation will be presented in a full-length pa-
per. We will discuss only the major results here. These
results are presented in terms of the following nondi-
mensional parameters: temperature u � �T 2 T0��DT ,

FIG. 2. Comparison of temperature and heat flux distributions
obtained from the Boltzmann equation, the ballistic-diffusive
equations, the Cattaneo equation, and the Fourier law for differ-
ent time and phonon Knudsen number �Kn � L�L�.
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FIG. 3. Comparison of surface heat flux obtained from the
Boltzmann equation, the ballistic-diffusive equations, the Cat-
taneo equation, and the Fourier law as a function of time for
different phonon Knudsen numbers.

heat flux q� � q��CvDT �, time t� � t�t, and coordinate
h � x�L, where DT � T1 2 T0. We define the phonon
Knudsen number as Kn � L�L. The same problem is also
solved based on the Fourier heat-conduction equation, the
Boltzmann equation, and the hyperbolic heat-conduction
equation for comparison. Figures 2(a) and 2(b) illustrate
the temperature and heat flux distributions obtained from
all these approaches. Because in the ballistic-diffusive
equations and in the Boltzmann equation the temperature
of the incoming phonon flux is given as the boundary con-
dition, while in the Cattaneo and the Fourier law the lo-
cal equilibrium temperature is specified, we have rescaled
the solution of the Boltzmann equation and the ballistic-
diffusive equations based on the local temperature rather
than the DT . Unrescaled temperature distributions would
2300
show a temperature jump at the boundaries as shown in
the past work [4,9]. It clearly illustrates that the ballistic-
diffusive equations are a much better approximation to the
Boltzmann equation compared to the Fourier and the Catta-
neo equations. Figure 3 gives the surface heat flux history
based on the four different equations. The Fourier law
leads to unrealistic infinite heat flux as time approaches
zero and when the film thickness becomes smaller than
the mean free path. The latter is consistent with the nonlo-
cal heat-conduction model developed by Mahan and Claro
[3], but the short time scale behavior cannot be predicted
by that model. The Cattaneo equation creates artificial
surface heat flux oscillation. The agreements between the
ballistic-diffusive equation and the Boltzmann equation are
excellent over a wide range of time and length scales.

In summary, we have established a new set of heat-
conduction equations, named as the ballistic-diffusive
heat-conduction equations, that are applicable to transient
heat conduction in small structures. The equations are
derived from the Boltzmann equation under the relaxation
time approximation. Computational results suggest that
they are a much better alternative to the Fourier and the
Cattaneo equations at scales when the mean free path
is comparable to the system size and when the time is
comparable to the carrier relaxation time. These equations
are much simpler to solve than the Boltzmann equation
and can be readily incorporated into available engineering
softwares to deal with fast heat-conduction processes in
complicated nanostructures. We further suggest that the
same methodology may be applied to deal with gas flow
in microstructures and electron transport in nanoelectronic
devices, in the regime where the particle description of
the carriers is still valid.
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