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Orbital and Spin Photon Angular Momentum Transfer in Liquid Crystals
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All-optical angular control of the molecular alignment in liquid-crystal films is demonstrated using a
laser beam having an elliptically shaped intensity profile. The material birefringence is unimportant, as
proven by the fact that good alignment is obtained with unpolarized light. This raises the possibility of
achieving optical angular control of transparent isotropic bodies. A general theoretical approach, based
on light and matter angular momentum conservation, shows that the optical alignment is due to the
internal compensation between the transfer of the orbital and the spin part of angular momentum of the
incident photons to the material.
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Transfer of angular momentum from light to matter was
proposed a long time ago by Beth [1] as an effective tool
to achieve the angular manipulation of macroscopic ob-
jects. In Beth’s experiment the photon spin angular mo-
mentum was transferred to a quartz wave plate producing
a tiny torque that was measured. More recently, the same
mechanism was used to induce rotation of liquid-crystal
molecules [2,3] and laser-trapped microscopic calcite par-
ticles [4], raising the possibility of light-driven molecular
motors [5]. Since only the spin part of the photon an-
gular momentum is involved, Beth’s mechanism requires
birefringent materials and polarized light. Allen et al. [6]
pointed out the possibility of an experiment to observe
the torque produced by the transfer of the orbital part of
photon angular momentum. This new mechanism is more
interesting for applications because it raises the possibil-
ity of optically aligning and manipulating both isotropic
and anisotropic transparent bodies using, eventually, un-
polarized light. Transfer of the orbital angular momentum
of light to opaque particles was recently achieved [7,8],
using a laser beam oscillating in a high-order Laguerre-
Gauss mode. Laguerre-Gauss laser beams, however, can-
not transfer their orbital angular momentum to transparent
materials [9]. Indeed, at present, no experiment is reported
in the literature, in which the orbital angular momentum of
photons is transferred to transparent bodies.

We demonstrate in this paper the possibility of achieving
optical orientational control on transparent nematic liquid-
crystal (NLC) film by transfer of the orbital angular mo-
mentum of photons. Liquid crystals were chosen because
their strong birefringence provides a simple way to observe
their rotation around the laser beam axis, just by looking
at the polarization of the transmitted far field. Moreover,
NLCs are affected by both the spin and the orbital angular
momentum of light, providing good material to check the
total angular momentum conservation law. We stress, how-
ever, that the material birefringence is not really important
in our experiment, and that the same apparatus could be
used, in principle, to optically manipulate isotropic trans-
parent bodies also.
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As shown in Ref. [9], in the paraxial optics approxi-
mation, the photon linear and orbital angular momentum
components can be represented by the usual quantum
mechanics operators p̂i � 2ih̄≠i �i � x, y, z� and L̂z �
2ih̄�x≠y 2 y≠x� acting on Jones’ ket jJ� � �Ex , Ey�.
The rapidly varying factor exp�2ivt 1 ikz� in the optical
field was suppressed. In the same approximation, the
photon spin component operators are Ŝx,y,z � h̄ŝ1,2,3,
where ŝi are the Pauli matrices [10], and the total photon
angular momentum operator along the beam axis is
Ĵz � L̂z 1 Ŝz . For a given operator Ô, besides the
local average �Ô� � �JjÔjJ�, it is useful to consider
averages O �z� �

R
dxdy �JjÔjJ��

R
dxdy �J j J� over the

x, y plane. With these definitions, the average spin
z-component Sz�z� of the photons crossing the plane
z � const is given by Sz�z� � h̄s̄3�z�, where s3�x, y, z�
is the reduced Stokes parameter of the local polarization
of the beam, and the bar means the average over the
transverse intensity profile I�x, y, z� � �c�8p� �J j J�.
Assuming that all media are transparent, the power
P �

R
dxdy I�x, y, z� carried by the beam is independent

of z. Transparent optical components along the beam
path are represented by unitary operators Û acting on
jJ�. In particular, a NLC film can be considered as a thin
(thickness L ø pw2

0�l, the diffraction length associated
with the beam waist w0) inhomogeneous birefringent
plate. The operator of such a plate is Û � exp�i�c0 1

a�2�� exp�ia�2�ŝ1 cos2f 1 ŝ2 sin2f��, where c0 is the
phase change suffered by the ordinary wave in traversing
the plate, a is the phase difference between the extraordi-
nary and ordinary waves, and f is the azimuthal angle of
the optical axis with respect to the laboratory x axis. In
NLC, the optical axis is along the molecular director n �
�sinu cosf, sinu sinf, cosu�. In principle, c0, a, and f

may all depend on the x and y coordinates. For our
purposes, it is enough to assume that a � a�x, y� and
constant c0 and f. Near the center of the beam, the
optical phase difference a induced in the NLC is maxi-
mum, so we approximate a�x, y� with the parabolic
profile a�x, y� � a0 2

1
2Bijrirj �r1 � x, r2 � y�, the
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2 3 2 matrix Bij being defined positive. As shown in
Ref. [9], the average total angular momentum change
DJz � DSz 1 DLz , suffered by each photon traversing
the plate, is obtained by averaging over the input ket jJin�,
and over the x, y plane the operator dĴz � Ûy�Ĵz , Û�.
The total angular momentum transferred to the medium
per unit time (i.e., the torque acting on it) is 2FDJz ,
where F � P�h̄v is the photon flux. Evaluating the
relevant commutator, we calculated the average photon
spin change as

DSz � h̄��1 2 s2
30�1�2sina sin2�c 2 f�

2 s30�1 2 cosa�� , (1)

where the bar means the average with respect to the beam
intensity profile I�x, y� at the sample plane, and s30 and c

are the ellipticity and angle of the incident beam polariza-
tion, respectively. In a similar way, we found the change
in the average orbital photon angular momentum,

DLz � h̄bg sin2�g 2 b� cos2�c 2 f� , (2)

where b and g are the angles between the fixed x axis and
the major axis of the ellipse associated with the a�x, y�
and the I�x, y� profiles, respectively, b and g being the
respective anisotropy constants. These two ellipses are
defined by the equations B21

ij jijj � 1 and G21
ij rirj � 1,

where Gij � rirj is the matrix of the second moments of
the beam intensity profile I�x, y� at the sample position.
The positive constants b and g are defined as half the
absolute difference between the eigenvalues of Bij and Gij ,
respectively. In the case of unpolarized light, Eq. (1) yields
DSz � 0 and Eq. (2) reduces to

DLz �
1
2 h̄bg sin2�g 2 b� . (3)

Equation (3) also holds for isotropic materials, provided
a�x, y��2 is replaced by the phase profile c0�x, y�. In
Eqs. (1)–(3), c , s30, and g are the control parameters.
If the plate is rigid, the difference b 2 f is constant,
and DJz depends on one angular coordinate, say, DJz �
DJz�f�. In the case of NLC, the minimum elastic energy
is reached when b � f, because, in this configuration,
the prevailing molecular distortion is the twist distortion,
having the lowest elastic constant [11]. Therefore, we as-
sume, throughout this paper, b � f. For a beam hav-
ing a circular cross section (which applies, for example, to
Hermite-Gauss and Laguerre-Gauss laser modes), g � 0
and, hence, DLz � 0, as mentioned above. If the plate is
immersed in a high viscosity fluid, its equation of motion
is h �f � DJz�f�, where �f is the angular velocity and h is
the viscosity coefficient. The body equilibrium condition
is DJz�f� � 0 and thus DLz and DSz must exactly com-
pensate (or both be zero). The NLC samples used in our
experiments are not rigid bodies and their interaction with
light is nonlinear: nevertheless, it can be shown that, for
homeotropic strong anchoring at the sample walls, DJz is
still balanced by viscous torque only (although the mathe-
matical expression of this torque is more complicated) and
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the equilibrium condition is still DJz � 0. The equilib-
rium condition cannot be met in general. For example,
in the case of circular cross section and circular polariza-
tion of the incoming beam, Eqs. (1) and (2) yield DLz � 0
and DSz � 6h̄�1 2 cosa� fi 0 per photon, and the body
is forced to continuously rotate, as reported in Refs. [2,4].
To achieve the angular control of the NLC alignment with
circularly polarized light, two beams must be used having
opposite handedness [5]. One-beam angular control can
be obtained by making the beam cross section elliptical,
so that g fi 0. This should also work with isotropic bod-
ies (or with unpolarized light). Anisotropic materials, such
as NLC, are affected by both the spin and the orbital angu-
lar momentum of light, so we may control the reorientation
plane of the sample by changing DSz and DLz separately,
as shown in this paper.

In our experiments, we used a frequency doubled cw
Nd:YAG laser source, working at l � 532 nm. The
sample was a 50-mm-thick E7 nematic film sandwiched
between glass covers coated with octadecyldimethyl(3-
trimethoxy-silylpropyl)ammonium chloride (DMOAP) for
strong homeotropic alignment. The laser intensity profile
at the sample position was made elliptical by using two
confocal cylindrical lenses, having focal lengths fx �
500 mm and fy � 30 mm in the x and y directions,
respectively. The beam radii (1�e2 intensity) at the lens
common focal plane were found to be wx � 130 mm and
wy � 10 mm, corresponding to a profile ellipticity m �
wx�wy � 13. The ellipticity of the intensity profile could
be reduced to m � 1 by moving the sample away from
the confocal plane. When required, we used a Pockels cell
to unpolarize the laser light, as described elsewhere [12].

Our detection apparatus was already described in detail
[11], and we sketch here its main features only. A rotating
polarizer was used to provide simultaneous and real time
measurements of the angular aperture Q and of the polar-
ization direction angle F of the far-field self-diffraction
ring pattern, which is formed beyond the NLC sample
when reorientation takes place. For small LC distortion
we have approximately Q ~ u2 ~ a and F � f, where
u and f are the polar coordinates of the molecular director
n, averaged over the sample thickness [11]. The angles Q

and F provide roughly independent degrees of freedom of
n. We made measurements using unpolarized as well as
linearly polarized light. In the case of the unpolarized light,
when the laser power P exceeded the threshold Pth for the
optical Fréedericksz transition (OFT), the steady-state re-
orientation plane was found almost independent of P and
parallel to the major axis of the beam intensity profile, as
expected from Eq. (3). (This is shown in Fig. 1.)

The data were obtained by rotating the cylindrical lens
gauge (and hence the intensity profile) to g � 30± with
respect to the horizontal plane. Similar results were ob-
tained at different angles g, thus proving the possibility of
achieving angular control by transfer of the orbital photon
angular momentum only. Liquid crystals are birefringent
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FIG. 1. The steady-state azimuthal angle f of the NLC reori-
entation plane as a function of the laser power. The laser was
unpolarized and its intensity profile was elliptical with ellipticity
m � 4.5 and with the major axis set at g � 30± with respect to
the horizontal plane.

and, hence, they are sensitive to photon spin as well. In
order to study the competition between the two types of
photon angular momentum, we used a linearly polarized
laser beam having its elliptical profile at angle g with re-
spect to the polarization direction c � 0. In this case,
the relative ratio between DSz and DLz is governed by
the dimensionless parameter B � sina�bg. Changing B
provides a way to achieve one-beam angular control by
exploiting the internal compensation between the spin and
the orbital angular momentum of photons.

In Fig. 2 we reported the angle f of the NLC reorienta-
tion plane at steady state as a function of the beam profile
ellipticity. The figure refers to a beam intensity profile at
g � 45± with respect to the laser polarization direction. In
obtaining these data, the sample was moved along the beam
to change the intensity profile ellipticity m � wx�wy at the
NLC position. The laser power P was simultaneously ad-
justed to keep the peak intensity I � 2P�pwxwy constant.
The constant intensity condition was checked by looking
at the far-field pattern beyond the sample: all points in
Fig. 2 correspond to about one diffraction ring in the far
field. The solid curve is the best fit to the data, obtained
by solving DJz�f� � 0 as given by Eqs. (1) and (2). In
the calculations we assumed that, at steady state, the elas-
tic energy was minimum (i.e., b � f), and that the phase
profile a�x, y� had approximately the same ellipticity of
the intensity profile I�x, y�, so that bg � �m2 2 1�2�4m2.
As a fit parameter we used sina, obtaining sina � 0.378.
We notice that, for high enough profile ellipticity m, the
transfer of the orbital angular momentum of photons al-
ways prevails and the angle f tends to be aligned along
the intensity profile major axis. This is due to the fact that
the spin transfer DSz is bounded to 62h̄ per photon, while
DLz can be made large at will by increasing g. Similar
results were obtained at other values of g. In all cases, we
checked that, for linear polarization, the power threshold
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FIG. 2. The steady-state azimuthal angle f of the NLC re-
orientation plane as a function of the beam profile ellipticity.
The laser beam was linearly polarized and the major axis of the
intensity profile was set at g � 45± with respect to the beam
polarization direction. The solid curve is the best fit obtained
from Eqs. (1) and (2).

to induce the OFT was about one-half the threshold mea-
sured in the case of unpolarized light, confirming previous
results [12]. At g � 90±, and for large enough intensity
profile ellipticity �m . 5�, when the laser power exceeded
a second critical threshold, we observed the onset of persis-
tent time-dependent oscillations of the reorientation plane.
(An example is shown in Fig. 3.)

As the laser intensity is increased, the oscillations be-
came more and more irregular until an apparently chaotic
dynamical regime is observed. The phenomenon is inter-
esting in itself and was never observed before.

The only reported cases of optically induced nonlinear
oscillations in NLC, in fact, are the OFT induced by
elliptically polarized light [3] and the OFT induced by
an s-polarized laser beam at small incidence angle [13].
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FIG. 3. Example of persistent time oscillations of the azi-
muthal angle f of the molecular director. The laser beam was
linearly polarized and the major axis of the intensity profile was
set at g � 90± with respect to the beam polarization direction.
The laser incident power was P � 350 mW.
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At present, the mechanism underlying the onset of the
observed oscillations is not clear, and the phenomenon
will be the object of further study. We think, however,
that Eqs. (1) and (2) may still retain some validity in the
time-dependent case also. However, because the elastic
energy must not be minimum out of equilibrium, the con-
dition b � f may now be violated, thus adding a fur-
ther degree of freedom. Developing a model to explain
the occurrence of nonlinear oscillations and, eventually,
deterministic chaos in our experimental configuration is
certainly a difficult task, because the plane-wave approxi-
mation cannot be exploited. In particular, the recent model
based on gluing of bifurcations [14] cannot be extended to
the present case.

In conclusion, we proved that the alignment plane of
NLC films above the threshold for the OFT can be con-
trolled by using a laser beam having an elliptical cross
section, so that the orbital angular momentum of pho-
tons could be transferred to the medium. Good alignment
was obtained by using unpolarized light, showing that the
sample birefringence is unimportant, thus raising the possi-
bility of achieving angular control of isotropic bodies. The
laser incident power is not critical in the alignment process.
We also made measurements using linearly polarized light.
In this case, the internal competition between the orbital
and the spin part of photon angular momentum drives the
system along a plane that can be controlled by acting on the
ellipticity of the beam intensity profile. The experimental
results are in good agreement with a simple model, where
the NLC film is considered as an optically thin inhomoge-
neous birefringent plate. When the intensity profile major
axis and the light polarization direction are perpendicular
2288
to each other, the alignment plane of the NLC was found
to oscillate continuously. At very high laser power, the os-
cillations became apparently chaotic. This unexpected and
intriguing phenomenon will be the object of future work.
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