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Collective Directional Transport in Coupled Nonlinear Oscillators without External Bias
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Directed collective motion in a circular array of unidirectionally coupled oscillators with symmetric
potential is obtained numerically in the absence of external bias. This striking feature is interpreted
as the effect of the spontaneous breaking of temporal symmetry of the coupling. It is revealed that
a proper match of various control parameters is important in generating an optimal coherent global
transport. Noise-sustained directed transport is also observed, and the related stochastic resonance in an
autonomous system is identified.
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Cooperative phenomena of interacting oscillator sys-
tems have been extensively investigated in relating to a va-
riety of behaviors such as synchronizations, clustering [1],
collective transport, and nonlinear waves [2]. Recently, a
subject of significance is the directional transport behav-
ior in the presence of an external potential field without
bias. For instance, directed transport of oscillators can be
induced by a ratchet potential with broken spatiotemporal
symmetry. This has been investigated in recent decades on
various context organisms [3,4]. Till now, however, very
little attention has been paid to the collective transport dy-
namics of spatiotemporal systems in this aspect. So far as
we know, a collective directed motion can appear in a sys-
tem consisting of a large number of coupled subsystems
only in the presence of external drift (i.e., bias). Thus, it
is of great theoretical interest to ask whether we can find
spatiotemporal systems which manifest global transport in
the absence of external bias, and if the answer is positive, a
further important topic is to reveal the mechanism under-
lying such a striking feature. Practically, this study may
open a new direction to understand the rich macroscopic
transportation behaviors of chainlike objects under sym-
metric global field in various disciplines of natural science
(in particular, in biological systems) from the dynamics
of microscopic subunits and their interactions. We show
in this Letter that the directed motion can be induced by
a unidirectional internal coupling and symmetric field in
the absence of an external bias. We interpret this as the
effect of the coupling-induced ac force, which breaks the
temporal symmetry. Currents both along and reversal to
the coupling direction are found and analyzed. The pin-
ning and depinning transition of the coupled array is re-
vealed by varying a control parameter. Noise-sustained
directed transport and the associated stochastic resonance
is observed.

We start with a typical model of broad interest: the one-
dimensional lattice of N oscillators with nearest-neighbor
couplings:
0031-9007�01�86(11)�2273(4)$15.00
�Xi � fi�Xi� 1 �´ 1 r�g�Xi11 2 Xi�
2 �´ 2 r�g�Xi 2 Xi21� , (1)

where i � 1, 2, . . . , N and ´ and r denote the diffusive and
the gradient couplings, respectively. �Xi � f�Xi� describes
the nonlinear dynamics of a single oscillator, with Xi �
�xi�1�, xi�2�, . . . , xi�n�� being the phase-space variables.
g�x� represents the coupling function. System (1) is a
generalization of diffusively coupled oscillators, which
has been extensively studied [5]. For n � 1, if
f�x� � 2d sinx and g�x� � x 2 a, Eq. (1) gives
the dynamics of the array of N coupled overdamped
pendula: �xi � 2d sinxi 1 �´ 1 r� �xi11 2 xi 2 a� 2

�´ 2 r� �xi 2 xi21 2 a�, where d is the height of the
potential barrier and a � 2pd is the static spring length
(0 # d # 1 is the frustration, measuring the mismatch
between the potential period 2p and the static length
a). When r � 0, this system goes back to the famous
Frenkel-Kontorova (FK) model in the overdamped case,
which has been adopted as a representative model in
various contexts [6]. Therefore this is a generalization of
the FK model. In this Letter, we study the case of unidi-
rectional coupling, r � ´ � 1�2. Unidirectional coupling
plays a significant role in understanding numerous behav-
iors in information transmissions in neuron systems [7]
and traffic flow [8]; moreover, it can be easily realized in
electric circuits [9] and coupled Josephson junctions [4].
By adopting the periodic boundary condition, the equation
of motion can be written as

�xi � 2d sinxi 1 �xi11 2 xi 2 a�,
xi1N � xi 1 Na .

(2)

Na � 2pM, where M is an integer indicating the num-
ber of circles of the whole chain (each site has 2p length).
A collective current can be defined as J�t� �

1
N

PN
i�1 �xi�t�.

It is emphasized that the parameter a in Eq. (2) is not
a bias; it determines only the relative distance between
© 2001 The American Physical Society 2273
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two neighbor sites, not the direction of the global motion.
When d � 0, it is easily found that (2) has a stationary
solution xi � a 1 ia with a being arbitrary, and no di-
rected collective motion can be observed, i.e., J�t� � 0.

For both d ! 0 (strong coupling) and d ¿ 1 (weak
coupling) limits, we have J�t� � 0. As a finite external
field is applied, i.e., 0 , d ~ O�1�, it is interesting
whether there is a net directed current. In Fig. 1, evolu-
tions of xi�t� and Ji�t� � �xi�t� at d � 0.05, 1.2, and 3.77
are presented for a � p�5. For small d, a slow directed
motion of the array can be found [see Figs. 1(a) and 1(b)].
Because of the strong coupling, the motion is nearly uni-
form. When d is large, a typical stick-slip feature is
observed [see Figs. 1(c)–1(f)]. It is interesting to notice
that for moderate d, as shown in Figs. 1(c) and 1(d), the
array moves with a larger velocity; i.e., there exists an
optimal d (coupling) that produces a maximum transport
current. In Figs. 2(a) and 2(b), the average current J �
limT!`

1
T

RT
0 J�t� varying with d and d are computed. It

is intriguing that for each d fi 0, 1, there is an optimal d0
that possesses a maximum current. For any d there is a
critical d value dc, over which a pinning transition occurs,
i.e., J � �xi � 0 for d . dc. For small d ! 0 and for
d ! dc, J ! 0 via the scaling laws J ~ d2 and J ~

�dc 2 d�1�2, respectively. The frustration d plays a sig-
nificant role in determining the transport properties. It can
be seen from the J vs d relation given in Fig. 2(b) that all
curves are antisymmetric about d � 1�2. For d . 1�2,
current reversal J , 0, i.e., the directed transport occurs
against the coupling direction, can be observed in a large
region. The reversed current can also be found around
d � 1�2 for moderate d [see Fig. 2(a) for d � 15�32].
For small couplings (large d), the array is pinned for
some values of d. It is interesting to note that an optimal
frustration exists also for the system to have the best
efficiency of directed transport.
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FIG. 1. The evolution of the positions xi�t� and velocities Ji�t�
of particles. a � p�5 (d � 0.1). (a),(b) d � 0.05, (c),(d) d �
1.2, and (e),(f) d � 3.77. For simulations, the number of the
sites is chosen as such that the rational number d takes the form
d � M�N with M and N being two irreducible integers, and
this role is applied for all the following figures.
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For both small and large d (d . dc), further numerical
and theoretical analyses can be undertaken. Let us first
consider the case of d ø 1. For d � 0, we have J � 0,
and then x0

i11 � x0
i 1 a and x0

i 2 x0
j � �i 2 j�a. For

d ø 1, the array moves uniformly with a small velocity;
therefore, by using the adiabatic approximation [neglect-
ing �xi in Eqs. (2), which will be consistently shown to be
of d2 order], one obtains xi11 � xi 1 a 1 d sinxi; i.e.,
the spatial configuration is sinusoidally modulated by the
amplitude d. By summing over Eqs. (2), one has J�t� �
2bd, where b �

1
N

PN
i�1 sinxi . Thus an important task

is to work out this summation. To the first-order approxi-
mation, one has b � 1

N

PN
i�1 sinx0

i 1
d
N

PN
i�1 cosx0

i 3Pi21
j�1 sinx0

j . Obviously b0 �
1
N

PN
i�1 sinx0

i � 0; then one

has b � d
2N �

P
i,j sin�x0

i 1 x0
j � 2

P
i,j sin��i 2 j�a�� �

2
d

2N

P
i,j sin��i 2 j�a�, where the summations are for

j , i. For a � 0 and 2p (d � 0, 1), b � 0, thus J � 0.
For a fi 0 or 2p , one gets

b � 2
d
4

∑
tan

µ
a
2

∂∏21

�a fi 0, 2p� . (3)

Therefore we obtain the average net current for small d:

J�d, d� � C�d, d�d2,

lim
d!0

C�d, d� � C�d� � �4 tan�pd��21 �d fi 0, 1� .
(4)

This formula, which is exact for d ! 0, explains the scal-
ing relation J ~ d2 for d ø 1. To make a comparison
with numerical results, in Fig. 2(c) we plot the function
C�d� in (4) by a dashed line. The diamond line corre-
sponds to results of direct simulation of Eqs. (2) for d �
0.01 ø 1. The agreement is perfect. Moreover, it can be
found from (4) that J�d, d� is antisymmetric with respect
to d about d � 1�2 , C�d, 1�2 1 d� � 2C�d, 1�2 2 d�.
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FIG. 2. (a) J varying with d for d � 1�16, 1�8, 1�4, and
15�32; (b) J vs d for d � 0.5, 1.0, 2.0, and 3.0; (c) a compari-
son between numerical results of Eq. (2) for d � 0.01 ø 1 (di-
amonds) and theoretical function C�d� in Eq. (4) (dashed line).
Perfect agreement is shown.
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This interprets the symmetry property and the current re-
versal behavior in Fig. 2(b) for small d.

It is instructive to explore the origin of this coupling-
induced directed current. For d fi 0, the structure of the
array is modulated by the sinusoidal field. Microscopi-
cally, this leads to a nonuniform interaction for each os-
cillator from other sites. One may define an effective
force on the ith oscillator as Fi

eff�t� � xi11 2 xi 2 a. In
Fig. 3(a), the effective force on the first oscillator for d �
1.0 and d � 1�32 is plotted. This force is time periodic,
Fi

eff�t 1 T � � Fi
eff�t�. Effective forces acting on other os-

cillators possess the same form but with different phases.
Significantly, this periodic force is neither symmetric nor
antisymmetric with respect to t, i.e., Fi

eff�2t� fi Fi
eff�t�,

and Fi
eff�t 6

T
2 � fi 2Fi

eff�t�. Moreover, within one periodRt1T
T Fi

eff�t� dt � 0, as shown from positive and negative
parts labeled in Fig. 3(a). Thus, these forces have zero
mean for both time and space, i.e., 1

T

RT
0 Fi

eff�t� dt � 0 andPN
i�1 Fi

eff�t� � 0, but are temporally asymmetric in each
time period. It is just this temporal asymmetry that leads
to a short but strong drive in one direction and a long but
weak force in the other direction, resulting in a preferred
direction of transport. One may apply this force to drive a
response oscillator: �xr � 2dr sinxr 1 Fi

eff�t�. The evo-
lution of the response system for dr � d � 1 is plotted
in Fig. 3(b). A directional stick-slip motion is reproduced.
Flach et al. [10] considered the motion of a particle in a
1D periodic potential under the influence of an ac force.
If the ac force breaks the time symmetry, they claimed
that a directed current can exist. Our result supports this
proposition. An essentially significant point here is that
in the present case, the asymmetric periodic force is self-
organized among the oscillators by the internal coupling,
not artificially applied.

Let us turn to the second point, the behavior around dc.
When d . dc, �xi � 0, then the stationary state of (2) is
the sine-circle map:

xi11 � xi 1 2pd 1 d sinxi , (5)

which has been well studied as a paradigmatic model for
phase locking, quasiperiodicity, and chaos. In Fig. 4(a),
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FIG. 3. (a) F1
eff�t� for d � 1.0 and d � 1�32; (b) the evo-

lution of the response system for dr � d. Directed stick-slip
motion is produced.
we plot the bifurcation diagram of map (5) with 2p mod-
ulo for d � 1�32. It can be found that a crisis, i.e., a
sudden expansion of size of the chaotic attractor, occurs at
dcr � 4.37. The J vs d relation is also plotted in Fig. 4(a)
by a diamond line at d � 1�32 for system (2). A striking
result is that the J vs d curve turns to J � 0 at dc � dcr ,
i.e., just at the d value for the crisis. In Fig. 4(b), we
plot both dcr and dc vs d, and we have dcr � dc in a
large range of d. This identity is very similar to Aubry’s
commensurate-incommensurate phase transition in the
FK model [11], where the pinning-depinning transition
corresponds to the destruction of the last KAM torus in the
standard map (area-preserving). For the present case, the
pinning transition is shown to correspond to crisis in
the circle map (dissipative).

A heuristic understanding of the mechanism for this cor-
respondence can be given as follows. Crisis is known
to happen when an unstable periodic orbit collides with
the boundary of the chaotic attractor [12]. In Fig. 4(a)
the unstable period-1 orbit (UPO-1) of (5) xu � 2p 2

sin21�2pd�d� is given by a dashed line. Obviously, cri-
sis occurs as the UPO-1 collides with the boundary of the
chaotic attractor. To find the relation between crisis and
the pinning transition, in Fig. 4(c) we plot the pinning-
state configuration of system (2) with 2p modulo for
d � 4.4 . dc�dcr�. The state of Fig. 4(c) is an unstable
period-N state of the circle map (5), embedded in the
chaotic state after the crisis (not before the crisis), and this
state is also a stable stationary state of Eq. (2). We also
give the UPO-1 of (5) in Fig. 4(c) by a solid line. It can

0 2 4

0.0

0.5

1.0

d
c

(a)

d

0 8 16 24 32
0.0

0.5

1.0

d=4.36

i

(c)

i

x i /
2π

0.00 0.05 0.10 0.15
3.5

4.0

4.5

d=4.4

d
cr

J

x i /
2π

(d)

(b)
x i /

2π

δ

d cr
, c

 Array
 Circle Map

0

1

2
0 10 20 30 40 50 60

 

 

0 100 200 300
0

5

FIG. 4. (a) The bifurcation diagram of the circle map for
d � 1�32. The dashed line denotes the UPO-1 of the circle
map, and the diamond line represents J against d. The iden-
tity between dcr for the crisis of the circle map and dc for the
pinning transition of Eqs. (2) is apparent. (b) Comparison be-
tween dc and dcr vs d. (c) The pinning state profile (modulo
2p) of the array for d � 4.4 . dc and d � 1�32 (diamond),
and the solid line is the corresponding UPO-1. (d) Upper: the
pinning state of the array for d � 4.4, d � 1�32 (no 2p mod-
ulo); lower: the iterations of the circle map for d � 4.36 , dc
and 4.4 . dc. Phase delocalization occurs at dc.
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FIG. 5. The stochastic-resonance-like relation between J and
the noise intensity D for d � 4.4, 4.6, 4.8, and 5.0.

be seen that the basic state of the pinning state is just the
UPO-1, with a few deviating spatial “defects.” These de-
fects, in fact, are just kinks, as shown in the upper frame
of Fig. 4(d) (no 2p modulo). These kinks are absolutely
necessary for the basic UPO-1 orbit to fit the boundary
conditions of Eqs. (2). For the circle map, crisis in fact
implies a delocalization of xi , i.e., chaos occurs in a larger
region (see lower figure, the line d � 4.4), leading to a
wide chance of pattern selection. This delocalization pro-
duces slips for Eq. (5) and can fit the spatial kinks of the
pinning state of (2) [see Fig. 4(d) upper frame]. When
d , dc�dcr �, the orbit xi of Eq. (5) is localized [see the
line d � 4.36 of the lower figure in 4(d)]; thus the kink
configuration of (2) can never be achieved in this regime
by the iterations in space only. This results in the temporal
instability of the pinning state and consequently a macro-
scopic directed motion of the array.

Finally, let us consider the noise effect. Here we simply
apply the spatially uncorrelated Gaussian thermal noise:
	ji�t�
 � 0, 	ji�t�jj�t0�
 � Ddi,jd�t 2 t0�, where D is
the noise intensity. Noise can play an important role in the
vicinity of the pinning point, because noise can effectively
decrease the height of the potential. With a collaboration
between noise and the coupling, the disordered energy can
be translated into the ordered directed motion. In Fig. 5,
we exhibit the relation between J and D for d � 1�32
at d � 4.4, 4.6, 4.8, and 5.0 . dc � 4.37. Without
noise, these d’s lie in the pinning region of J � 0.
Resonancelike behavior is clearly shown when noise is
applied [13]. For small noise, the pinning mechanism
dominates and J is very small; for large noise, disorder
2276
becomes overwhelming, the directed transport is gradually
destructed, and J is small, too. An optimal noise can
produce the largest directed transport current. In this case,
we find stochastic resonance without external signal and
bias, caused by the interplay of the symmetric nonlinear
field, one-way coupling, and noise.

In the study of the ratchet problem, one finds that a par-
ticle can manifest directional motion under asymmetric po-
tential (which does not offer bias along any direction)
together with symmetric nonequilibrium forcing (including
noise). Here we show that a coupled system can manifest
directional motion under symmetric potential if the cou-
pling is asymmetric (which does not either offer bias along
any direction); the directional motion of the 1D chain can
be along or reversal to the coupling direction. This new
feature may open a new direction to study the collective
motion of spatially extended objects, which popularly ex-
ist in nature, in particular, in biological systems.
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