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Control of Chaos via an Unstable Delayed Feedback Controller
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Delayed feedback control of chaos is well known as an effective method for stabilizing unstable
periodic orbits embedded in chaotic attractors. However, it had been shown that the method works only
for a certain class of periodic orbits characterized by a finite torsion. Modification based on an unstable
delayed feedback controller is proposed in order to overcome this topological limitation. An efficiency
of the modified scheme is demonstrated for an unstable fixed point of a simple dynamic model as well
as for an unstable periodic orbit of the Lorenz system.
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The problem of controlling chaos has attracted great
interest among physicists over the past decade. As first
pointed out by Ott, Grebogi, and Yorke [1], the existence of
many unstable periodic orbits (UPOs) embedded in chaotic
attractors raises the possibility of using very small external
forces to obtain various types of regular behavior. Since
that time a variety of chaos control methods have been
developed [2], among which the delayed feedback con-
trol (DFC) scheme [3] has gained widespread acceptance.
The DFC involves a control signal formed from the dif-
ference between the current state of the system and the
state of the system delayed by one period of the UPO so
that the control signal vanishes when the stabilization of
the desired orbit is attained. The method does not require
the real-time computer processing and is easy to apply in
different experimental contexts. Examples of experimen-
tal implementation include electronic chaos oscillators [4],
mechanical pendulums [5], lasers [6], a gas discharge sys-
tem [7], chemical systems [8], and a cardiac system [9].
Several modifications [10,11] of the original DFC method
have been proposed in order to improve its performance.
Socolar et al. [10] have introduced an extended delayed
feedback controller (EDFC) that involves the information
from many previous states of the system. The EDFC has
an advantage over the original method that it can stabilize
periodic orbits with a greater degree of instability [12,13].

Stability analysis of the delayed feedback systems is
very difficult. Nevertheless, some general analytical re-
sults have recently been obtained [14–17]. It has been
shown that the DFC can stabilize only a certain class of
periodic orbits characterized by a finite torsion. More pre-
cisely, the limitation is that any UPOs with an odd number
of real Floquet multipliers (FMs) greater than unity can
never be stabilized by the DFC. This statement was first
proved by Ushio [14] for discrete time systems. Just et al.
[15] and Nakajima [16] proved the same limitation for the
continuous time DFC, and then this proof was extended for
a wider class of delayed feedback schemes, including the
EDFC [17]. Hence it seems hard to overcome this inher-
ent limitation. So far only two efforts based on an oscillat-
ing feedback [18] and a half-period delay [19] have been
0031-9007�01�86(11)�2265(4)$15.00
taken to obviate this drawback. In both cases the mecha-
nism of stabilization is rather unclear. Besides, the method
of Ref. [19] is valid only for a special case of symmetric
orbits. Here we report an unstable delayed feedback con-
troller that can overcome the limitation without utilizing
the symmetry of UPOs. The key idea is to artificially en-
large a set of real multipliers greater than unity to an even
number by introducing into a feedback loop an unstable
degree of freedom.

EDFC for R . 1.—First we illustrate the idea for
a simple unstable discrete time system yn11 � msyn,
ms . 1 controlled by the EDFC:

yn11 � msyn 2 KFn , (1)

Fn � yn 2 yn21 1 RFn21 . (2)

The free system yn11 � msyn has an unstable fixed point
y� � 0 with the only real eigenvalue ms . 1 and, in ac-
cordance with the above limitation, cannot be stabilized by
the EDFC for any values of the feedback gain K . This is
so indeed if the EDFC is stable, i.e., if the parameter R
in Eq. (2) satisfies the inequality jRj , 1. Only this case
has been considered in the literature. However, it is easy to
show that the unstable controller with the parameter R . 1
can stabilize this system. Using the ansatz yn, Fn ~ mn

one obtains the characteristic equation

�m 2 ms� �m 2 R� 1 K�m 2 1� � 0 (3)

defining the eigenvalues m of the closed loop system
(1),(2). The system is stable if both roots m � m1,2 of
Eq. (3) are inside the unit circle of the m complex plain,
jm1,2j , 1. Figure 1(a) shows the characteristic root-locus
diagram for R . 1, as the parameter K varies from 0 to
`. For K � 0, there are two real eigenvalues greater than
unity, m1 � ms and m2 � R, which correspond to two in-
dependent subsystems (1) and (2), respectively; this means
that both the controlled system and controller are unstable.
With the increase of K , the eigenvalues approach each
other on the real axes, then collide and pass to the complex
plain. At K � K1 � msR 2 1 they cross symmetrically
the unite circle jmj � 1. Then both eigenvalues move
© 2001 The American Physical Society 2265
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FIG. 1. Performance of (a),(b) discrete and (c) continuous
EDFC for R . 1. (a) Root loci of Eq. (3) at ms � 3, R � 1.6
as K varies from 0 to `. (b) Stability domain of Eqs. (1),(2)
in the (K , R) plane; Kmx � �ms 1 1�2��ms 2 1�, Rmx �
�ms 1 3���ms 2 1�. (c) Root loci of Eq. (6) at ls � 1,
R � 1.6. The crosses and circles denote the location of roots
at K � 0 and K ! `, respectively.

inside this circle, collide again on the real axes, and one of
them leaves the circle at K � K2 � �ms 1 1� �R 1 1��2.
In the interval K1 , K , K2, the closed loop system
(1),(2) is stable. By a proper choice of the parameters
R and K one can stabilize the fixed point with an arbi-
trarily large eigenvalue ms. The corresponding stability
domain is shown in Fig. 1(b). For a given value ms,
there is an optimal choice of the parameters R � Rop �
ms��ms 2 1�, K � Kop � msRop leading to zero eigen-
values, m1 � m2 � 0, such that the system approaches
the fixed point in finite time.

It seems attractive to apply the EDFC with the parameter
R . 1 for continuous time systems. Unfortunately, this
idea fails. As an illustration, let us consider a continuous
time version of Eqs. (1),(2)

�y�t� � lsy�t� 2 KF�t� , (4)

F�t� � y�t� 2 y�t 2 t� 1 RF�t 2 t� , (5)

where ls . 0 is the characteristic exponent of the free sys-
tem �y � lsy and t is the delay time. By a suitable rescal-
ing one can eliminate one of the parameters in Eqs. (4),(5).
Thus, without a loss of generality we can take t � 1.
Equations (4),(5) can be solved by the Laplace transform
or simply by the substitution y�t�, F�t� ~ elt , which yields
the characteristic equation:

1 1 K
1 2 e2l

1 2 e2lR
1

l 2 ls
� 0 . (6)
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In terms of the control theory, Eq. (6) defines the poles
of the closed loop transfer function. The first and sec-
ond fractions in Eq. (6) correspond to the EDFC and plant
transfer functions, respectively. The closed loop system
(4),(5) is stable if all the roots of Eq. (6) are in the left
half-plane, Rel , 0. The characteristic root-locus dia-
gram for R . 1 is shown in Fig. 1(c). When K varies
from 0 to `, the EDFC roots move in the right half-plane
from locations l � lnR 1 2pin to l � 2pin for n �
61, 62 . . . . Thus, the continuous time EDFC with the pa-
rameter R . 1 has an infinite number of unstable degrees
of freedom and many of them remain unstable in the closed
loop system for any K .

Usual EDFC supplemented by an unstable degree of
freedom.—Hereafter, we use the usual EDFC at 0 # R ,

1; however, an additional unstable degree of freedom into
a feedback loop is introduced. More specifically, for a
dynamical system �x � f �x, p� with a measurable scalar
variable y�t� � g�x�t�� and an UPO of period t at p � 0,
we propose to adjust an available system parameter p by
a feedback signal p�t� � KFu�t� of the following form:

Fu�t� � F�t� 1 w�t� , (7)

�w�t� � l0
cw�t� 1 �l0

c 2 l`
c �F�t� , (8)

F�t� � y�t� 2 �1 2 R�
X̀
k�1

Rk21y�t 2 kt� , (9)

where F�t� is the usual EDFC described by Eq. (5) or
equivalently by Eq. (9). Equation (8) defines an additional
unstable degree of freedom with parameters l0

c . 0 and
l`

c , 0. We emphasize that whenever the stabilization is
successful the variables F�t� and w�t� vanish, and thus
vanishes the feedback force Fu�t�. We refer to the feedback
law (7)–(9) as an unstable EDFC (UEDFC).

To get an insight into how the UEDFC works let us
consider again the problem of stabilizing the fixed point

�y � lsy 2 KFu�t� , (10)

where Fu�t� is defined by Eqs. (7)–(9) and ls . 0. Here
as well as in a previous example we can take t � 1 without
a loss of generality. Now the characteristic equation reads

1 1 KQ�l� � 0 , (11)

Q�l� �
l 2 l`

c

l 2 l0
c

1 2 e2l

1 2 e2lR
1

l 2 ls
. (12)

The first fraction in Eq. (12) corresponds to the transfer
function of an additional unstable degree of freedom. Root
loci of Eq. (11) are shown in Fig. 2. The poles and zeros of
Q function define the value of roots at K � 0 and K ! `,
respectively. Now at K � 0, the EDFC roots l � lnR 1

2pin, n � 0, 61, . . . are in the left half-plane. The only
root l0

c associated with an additional unstable degree of
freedom is in the right half-plane. That root and the root ls

of the fixed point collide on the real axes, pass to the com-
plex plane, and at K � K1 cross into the left half-plane.
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FIG. 2. Root loci of Eq. (11) at ls � 2, l0
c � 0.1, l`

c �
20.5, R � 0.5. Insets (a) and (b) show Rel vs K and the
Nyquist plot, respectively. The boundaries of the stability
domain are K1 � 1.95 and K2 � 11.6.

For K1 , K , K2, all roots of Eq. (11) satisfy the in-
equality Rel , 0, and the closed loop system (7)–(10)
is stable. The stability is destroyed at K � K2 when
the EDFC roots l � lnR 6 2pi in the second “Brillouin
zone” cross into Rel . 0. The dependence of the five
largest Rel on K is shown in inset (a) of Fig. 2. Inset (b)
shows the Nyquist plot, i.e., a parametric plot ReN�v� ver-
sus ImN�v� for v [ �0, `�, where N�v� � Q�iv�. The
Nyquist plot provides the simplest way of determining the
stability domain; it crosses the real axes at ReN � 21�K1
and ReN � 21�K2.

As a more involved example let us consider the Lorenz
system under the UEDFC:

0
B@

�x
�y
�z

1
CA �

0
B@

2sx 1 sy
rx 2 y 2 xz

xy 2 bz

1
CA 2 KFu�t�

0
B@

0
1
0

1
CA . (13)

We assume that the output variable is y and the feedback
force Fu�t� [Eqs. (7)–(9)] perturbs only the second
equation of the Lorenz system. Denote the variables
of the Lorenz system by r � �x, y, z� and those ex-
tended with the controller variable w by j � �r, w�T .
For the parameters s � 10, r � 28, and b � 8�3,
the free (K � 0) Lorenz system has a period-one
UPO, r0�t� � �x0, y0, z0� � r0�t 1 t�, with the period
t � 1.5586 and all real FMs: m1 � 4.714, m2 � 1, and
m3 � 1.19 3 10210. This orbit cannot be stabilized by
the usual DFC or EDFC, since only one FM is greater
than unity. The ability of the UEDFC to stabilize this
orbit can be verified by a linear analysis of Eqs. (13)
and (7)–(9). Small deviations dj � j 2 j0 from the
periodic solution j0�t� � �r0, 0�T � j0�t 1 t� may be
decomposed into eigenfunctions according to the Floquet
theory, dj � eltu, u�t� � u�t 1 t�, where l is the
Floquet exponent. The Floquet decomposition yields
linear periodically time dependent equations d �j � Adj
with the boundary condition dj�t� � eltdj�0�, where

A �

0
BBB@

2s s 0 0
r 2 z0�t� 2�1 1 KH� 2x0�t� 2K

y0�t� x0�t� 2b 0
0 �l0

c 2 l`
c �H 0 l0

c

1
CCCA .

(14)

Because of equality dy�t 2 kt� � e2kltdy�t�, the delay
terms in Eq. (9) are eliminated, and Eq. (9) is transformed
to dF�t� � Hdy�t�, where

H � H�l� � �1 2 e2lt���1 2 e2ltR� (15)

is the transfer function of the EDFC. The price for this
simplification is that the Jacobian A, defining the exponents
l, depends on l itself. The eigenvalue problem may be
solved with an evolution matrix Ft that satisfies

�Ft � AFt , F0 � I . (16)

The eigenvalues of Ft define the desired exponents:

det�Ft�H� 2 eltI� � 0 . (17)
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FIG. 3. Stabilizing an UPO of the Lorenz system. (a) Six
largest Rel vs K . The boundaries of the stability domain are
K1 � 2.54 and K2 � 12.3. The inset shows the (x, y) projection
of the UPO. (b) and (c) shows the dynamics of y�t� and Fu�t�
obtained from Eqs. (13),(7)–(9). The parameters are l0

c � 0.1,
l`

c � 22, R � 0.7, K � 3.5, ´ � 3, lr � 10.
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We emphasize the dependence Ft on H conditioned by the
dependence of A on H. Thus by solving Eqs. (15)–(17),
one can define the Floquet exponents l (or multipliers
m � elt) of the Lorenz system under the UEDFC. Fig-
ure 3(a) shows the dependence of the six largest Rel on K .
There is an interval K1 , K , K2, where the real parts of
all exponents are negative. Basically, Fig. 3(a) shows the
results similar to those presented in Fig. 2(a). The unstable
exponent l1 of an UPO and the unstable eigenvalue l0

c of
the controller collide on the real axes and pass into the
complex plane providing an UPO with a finite torsion.
Then this pair of complex conjugate exponents cross into
domain Rel , 0, just as they do in the simple model of
Eq. (10).

Direct integration of the nonlinear Eqs. (13),(7)–(9)
confirms the results of linear analysis. Figures 3(b) and
3(c) show a successful stabilization of the desired UPO
with an asymptotically vanishing perturbation. In this
analysis, we used a restricted perturbation similar as we
did in Ref. [3]. For jF�t�j , ´, the control force Fu�t�
is calculated from Eqs. (7)–(9); however, for jF�t�j . ´,
the control is switched off, Fu�t� � 0, and the unstable
variable w is dropped off by replacing Eq. (8) with the
relaxation equation �w � 2lrw, lr . 0.

To verify the influence of fluctuations a small white
noise with the spectral density S�v� � a has been added
to the right-hand side of Eqs. (8),(13). At every step of
integration the variables x, y, z, and w were shifted by an
amount

p
12ha ji , where ji are the random numbers uni-

formly distributed in the interval �20.5, 0.5� and h is the
stepsize of integration. The control method works when
the noise is increased up to a � 0.02. The variance of
perturbation increases proportionally to the noise ampli-
tude, �F2

u�t�	 � ka, k � 17. For a large noise a . 0.02,
the system intermittently loses the desired orbit.

In conclusion, an unstable degree of freedom introduced
into a feedback loop can overcome the well known limi-
tation of the delayed feedback scheme. The proposed un-
stable controller can stabilize unstable periodic orbits with
a zero torsion and can be used for a wider class of chaotic
systems, e.g., the Lorenz system.
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