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Stagger-and-Step Method: Detecting and Computing Chaotic Saddles in Higher Dimensions
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Chaotic transients occur in many experiments including those in fluids, in simulations of the plane
Couette flow, and in coupled map lattices. These transients are caused by the presence of chaotic saddles,
and they are a common phenomenon in higher dimensional dynamical systems. For many physical
systems, chaotic saddles have a big impact on laboratory measurements, but there has been no way to
observe these chaotic saddles directly. We present the first general method to locate and visualize chaotic
saddles in higher dimensions.
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Chaotic transients are a common phenomenon in higher
dimensional dynamical systems and were observed in the
Lorenz system [1], in experiments on fluids [2,3], in many
low-dimensional systems [4,5], in spatiotemporal chaotic
systems [6], in simulations of the plane Couette flow
(a shear flow between two parallel walls) [7–9], and in
coupled map lattices [10]. Generally, these transients
are caused by the presence of a chaotic saddle [11,12].
We first describe, in some detail, a particular situation to
illustrate how chaotic saddles can strongly affect observed
experiments. Transition to turbulence in shear flows is
still not fully understood. The numerical model for shear
flow, studied in [8], has 19 degrees of freedom. For low
Reynolds numbers, it has a single stable stationary state,
laminar flow. Laminar flow is stable for all Reynolds
numbers. Reference [8] reports that, at a certain Reynolds
number, new stationary saddles appear and presumably
a chaotic saddle. The dynamics of perturbations outside
the domain of attraction of the laminar profile is very com-
plicated. They argue that phase space trajectories (transient
turbulent excitations) will eventually escape the tangle
and find their way to the laminar profile. Thus, the
turbulent structures seen are transient [8]. The full
numerical simulations in [7] of the plane Couette flow
and the 19 degree of freedom model in [8] have rather
similar behavior. They report that the distribution of
lifetimes as a function of perturbation amplitude and
Reynolds number has a self-similar fractal structure
[7–9]. This suggests that the long lifetimes arise for
those initial perturbations which come close in phase
space to a chaotic saddle, and it suggests that arbitrarily
large lifetimes should be possible and the “turbulent” state
would be supported by a chaotic saddle rather than an
attractor. The long-lived transients in pipe flow [3] imitate
a permanent turbulent state, making it extremely difficult
to determine the precise transition to sustained turbulence
(if it exists). These experiments all strongly suggest
the existence of a chaotic saddle. But the chaotic saddles
have not yet been directly observed except in the simplest
fluid models [1].
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The purpose of this Letter is to present a simple,
general method for locating chaotic saddles that are
responsible for the transient chaotic behavior. Our model
examples are still much simpler than the shear flow models
above, which would require major computer resources
for investigation. There are a small number of methods
for detecting chaotic saddles. The “Sprinkle method” [5]
works well for many systems in two dimensions, but not
in higher dimensions. It finds only points within 1023 of
the chaotic saddle and cannot be used for computing Lya-
punov exponents. The “PIM-triple method” [11] detects
and computes chaotic saddles (even in high-dimensional
phase space) provided the unstable dimension is one. This
method generates trajectories which are very close to the
stable set (e.g., within 1028), and Lyapunov exponents
can be computed. It has been used in chaotic scattering,
in open hydrodynamical flows, for communicating with
chaos, in a modulated class-B laser [13]. In the spirit
of the PIM-triple method, Jánosi et al. [14] developed a
method for reconstructing chaotic saddles from experi-
mental time series as in an NMR-laser experiment [15].
However, if the chaotic saddle is k-dimensionally unstable
for k . 1, the PIM-triple method will typically fail. In a
recent breakthrough, Moresco and Dawson [16] created
a new, complicated “PIM-simplex method,” showing it is
sometimes possible to deal with chaotic saddles having
unstable dimension two or higher, but the applicability of
the method is quite limited. The transition to turbulence in
shear flows, as discussed above, apparently have chaotic
transients which are unstable in several dimensions.
Therefore, it is important to have a general method that
detects and computes such chaotic saddles.

In this Letter, we report a general method for finding nu-
merically chaotic trajectories on chaotic saddles, a method
that works even if the unstable dimension is two or higher.
We call this method the “Stagger-and-Step method” and
it can be applied to flows (differential equations) or maps.
Our main result is that the Stagger-and-Step method gen-
erates a long numerical trajectory on the chaotic saddle.
The method works fine for four-dimensional systems such
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as the coupled Hénon maps and kicked double rotor map
with several parameter values, and we expect it to work
for a wide variety of higher dimensional problems. We
present the Stagger-and-Step method for maps, but the
method works the same for differential equations. Just
calculate the escape time for the ordinary differential equa-
tion. (To do this, consider the map generated by the nu-
merical differential equation solver which takes the system
from a point in phase space at time tn to a point at time
tn11 � tn 1 Dtn and apply the method.) Let F be a con-
tinuous map from the phase space �d into itself (d $ 2).
Let R be a “transient region” (that is, a region in �d that
contains no attractor). We investigate the very special tra-
jectories that remain in R for all positive time. The escape
time T �x� of x from R is the minimum n $ 0 for which the
nth iterate of x is not in R; write T �x� � ` if all forward
iterates of x are in R. Let C be the largest invariant set of
F in R; that is F�C� � C, so T �x� � ` for x [ C. As-
sume that C is nonempty and is “unstable,” i.e., the escape
time of almost every (in the sense of Lebesgue measure)
point x [ R is finite. The stable set, SC , of C is the col-
lection of all points x [ R such that T �x� � `. If the
escape time T �x� of a point x is high, then the point x is
close to SC . The collection of points At with escape time
at least t, for t large, is a small neighborhood of SC , and
as t increases At ! SC .

Our new Stagger method finds points on (or extremely
close to) SC by finding points with high escape times.
A stagger is a perturbation r of a point x resulting in
x 1 r such that T �x 1 r� . T �x�. This method cre-
ates “stagger trajectories,” that is, sequences �xn�n$0 of
the form

xn11 � xn 1 rn , (1)

where rn is a stagger, so T �xn11� . T �xn�. The pro-
cess stops as soon as T �xn11� $ T�, for some specified
T� . 0. To implement this method, specify some (large)
d . 0, and, for each n, we repeatedly choose random
points r [ �d with krk # d (using some specified dis-
tribution) until we find one with T �xn 1 r� . T �xn�; we
then set rn � r. In some situations, no such rn exists if
d is too small. The applicability of this method is due
to our choice of distribution used for choosing r. Fig-
ure 1(a) shows the usefulness of our choice of distribution
used for choosing r. We argue that, if r was chosen from
a uniform distribution (with krk # d), then the fraction
of perturbations which are staggers would go to zero ex-
ponentially fast as the escape time t ! `. To see this,
assume that, at t � 0, one selects N0 initial points (for N0
large) from a uniform distribution on R. Evolve these N0
points under the dynamics. For t $ 0, let Nt denote the
number of trajectories that are still in R at time t. Typi-
cally, Nt decays exponentially as time t increases [17];
see also the caption of Fig. 1(a). When using the “Expo-
nential Stagger Distribution” for choosing r, we find that
the fraction of staggers decreases much slower as t ! `,
and typically the probability that �T �xn 1 r� . T �xn�� is
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much higher than when using the uniform distribution as
escape time increases, so the computation time to get xn11
from xn in Eq. (1) is considerably lower. We now state the
distribution we use in our methods.

Exponential Stagger Distribution.—Let d . 0, and let
a be such that 102a � d. Let s be a uniformly distributed
random number between a and 15 (when we are com-
puting with 15-digit precision). Choose a random unit
direction vector u [ �d and define r � 102su. (The vec-
tor u is chosen from a uniform distribution on the set of
unit vectors.)

To illustrate the effectiveness of the Stagger method for
finding points having high escape times, we apply it to two
coupled Hénon maps. Let the map F from the phase space
�4 into itself be defined by

F�x, y, u, y� � ���A 2 x2 1 By 1 k�x 2 u�, x, C 2 u2

1 Dy 1 k�u 2 x�, u��� , (2)

where 0 # k # 1. We choose A � 3, B � 0.3, C � 5,
D � 0.3, and k � 0.4. Select the transient region R to
be �24, 4� 3 �24, 4� 3 �24, 4� 3 �24, 4�, and let d be
the length of the diagonal of R, so d � 16. Numerical
experiments show that for a stagger trajectory to proceed
from escape time 5 to escape time 31 requires on the aver-
age about 50 �31 2 5� � 1300 choices of r; that is, about
50 choices of r were needed before a (successful) stag-
ger occurs, i.e., finding an r which increases the escape
time. Figure 1(a) shows the probability of such a success
is largely independent of escape time [18], for times in
the interval [5,30], after which it drops precipitously. Fig-
ure 1(a) shows the results from the talley equivalent of ex-
amining 90 000 stagger trajectories.

We now present the Stagger-and-Step method that
allows us to compute a trajectory on a chaotic saddle.
Select any initial condition in R, choose any d . 0,
and choose T� . 0 (the minimal required escape time).
Using a stagger trajectory (with large d), find a point x0
with T �x0� $ T�. Now choose a small d � 10210. The
Stagger-and-Step method generates “Stagger-and-Step”
trajectories �xn�n$0 of the form

xn11 �

Ω
F�xn� if T �xn� . T� �a step�
F�xn 1 rn� if T �xn� # T� �rn is a stagger� ,

(3)

where krnk # d and T �xn 1 rn� . T �xn�. Hence, if xn

has escape time T �xn� . T�, then apply F. Note that
T ���F�xn���� � T �xn� 2 1. If T �xn� � T�, find a nearby
point xn 1 rn with a higher escape time and then apply
F. (In some situations, no such rn exists if d is too
small.) The perturbation rn in Eq. (3) is obtained as in
the stagger method (except d is small). Any Stagger-
and-Step trajectory �xn�n$0 satisfies (by construction)
kF�xn� 2 xn11k , d, i.e., �xn�n$0 is a d-pseudo tra-
jectory. Hence, �xn�n$0 is a numerical trajectory with
numerical precision of the order of d � 10210, and
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FIG. 1. The map F�x, y, u, y� � ���A 2 x2 1 By 1 k�x 2 u�, x, C 2 u2 1 Dy 1 k�u 2 x�, u���, with A � 3, B � 0.3, C � 5,
D � 0.3, and k � 0.4. (a) For a fractal set S in �m (such as the stable set of a chaotic saddle), the volume of the ´-neighborhood
of S (in a bounded region) scales like ´m2d , where d is the box-counting dimension of S (McDonald et al. [21]). Hence, the
probability of coming within ´ of the set S is proportional to the volume of its ´-neighborhood, which is proportional to ´m2d . P�T0�
can be thought of as the probability that a perturbation r is a stagger when r is chosen using the Exponential Stagger Distribution.
Since P�T0� is approximately constant on [5,29], one may select T �, e.g., T� � �5 1 29��2 � 17, to be an admissible escape time.
(b),(c) The chaotic saddle for the map F that is obtained by applying the Stagger-and-Step method using d � 10210 and T � � 30.
The figures were created using one Stagger-and-Step trajectory having 105 points. The Lyapunov exponents of this trajectory are
l1 � 1.33, l2 � 0.77, l3 � 21.97, and l4 � 22.54.
typically it approximates the chaotic saddle after a few
iterates. In other words, the Stagger-and-Step method
generates a numerical trajectory on the chaotic saddle.
Note that statistics (such as Lyapunov exponents) of such
a trajectory can be computed directly.

To illustrate the Stagger-and-Step method, we first apply
this method to two coupled Hénon maps. Let F be the map
in Eq. (2) with the same parameter values and transient
region as above. The maximal invariant set C is two-
dimensionally unstable, and the PIM-triple method fails to
generate chaotic trajectories on C. We choose T� � 30.
Having found an x0 with T �x0� � 30, we set d � 10210.
Applying the Stagger-and-Step method results in a single
numerical trajectory [shown in Fig. 1(b) after discarding
the first 100 points]. This numerical trajectory is very
close to the chaotic saddle, and its finite time Lyapunov
exponents are l1 � 1.33, l2 � 0.77, l3 � 21.97, and
l4 � 22.54. Numerical studies based on the Stagger
method show the points xn are in a d-neighborhood
of points with much higher escape time �t � 30�, so it
may be inferred the xn are within 2d of the maximal
invariant set. We now examine an example involving the
double rotor map to illustrate the Stagger-and-Step
method. The double rotor, introduced in [19] and revised in
[20], is composed of two thin, massless rods connected as
shown in Fig. 2(a). We refer to [19,20] for the descrip-
tion of the double rotor. The differential equations that
describe the kicked double rotor are presented in [19,20].
From these equations, they derive the “kicked double
rotor map” that relates the angles (u and w) and velocities
( �u and �w) immediately after the �n 1 1�th kick with
those immediately after the nth one [19]; see [20] for the
equations of the double rotor map. This map is studied
in [20] for n1 � n2 � T � I � m1 � m2 � l � 1,
L �

1
2

p
2, and the parameter r is varied. We se-
lect the same parameter values, and we choose r �
12. Select the transient region R to be �p�4, 5p�3� 3

�0, 2p� 3 �214, 14� 3 �216, 16� and we choose d � 1.
Note u near 0 or 2p is not in R. The maximal invariant
set C is two-dimensionally unstable, and the PIM-triple
method fails to generate chaotic trajectories on C. We
choose T� � 33. First, the Stagger method was applied
using d � 1 to find a point having escape time at least T�.
Having found an x0 with T �x0� � 33, we set d � 10210.
Applying the Stagger-and-Step method results in a single
numerical trajectory [shown in Fig. 2(b) after discarding
the first 100 points]. This numerical trajectory is very
close to the chaotic saddle; its finite time Lyapunov
exponents are l1 � 1.12, l2 � 0.33, l3 � 21.24, and
l4 � 22.87.

We now address the following question: What is a good
choice for T� so that a Stagger-and-Step trajectory is likely
to yield an entire chaotic saddle on which F is transitive?
We say that T� is an admissible escape time if �A1� for
every point p [ C, there is some computer point pc for
which kp 2 pck , d and T �pc� $ T�, and �A2� if pc

is a computer point with T �pc� $ T�, then pc is within
d of some point in C. To determine T� explicitly in an
example, we consider piecewise linear maps. For a . 0,
let fa : � ! � be the well-studied symmetric tent map;
that is, fa�x� � ax if x # 0.5 and fa�x� � a�1 2 x� if
x $ 0.5. We assume that a . 2. Then there is a chaotic
saddle. Select �21, 2� to be the transient region, and let
d � 1028. For each value a, we can determine an inter-
val of T� that guarantees that a Stagger-and-Step trajec-
tory remains in a d neighborhood of the invariant Cantor
set. For example, when a � 3, the admissible minimal es-
cape times are 20 # T� # 33. [For T� , 20 �A1� holds
but �A2� does not; for T� . 33 �A1� fails.] For a � 20,
we get 8 # T� # 12. We now investigate the map ga,b :
2263
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FIG. 2. (a) The double rotor. (b),(c) These figures are slices of a chaotic saddle for the double rotor map and were created using
one stagger and step trajectory having 4 000 000 points (T� � 33, d � 10210). The figures show two projections of approximately
10 000 points satisfying ju 2 pj , 0.01. The resulting Lyapunov exponents of this trajectory are l1 � 1.12, l2 � 0.33, l3 �
21.24, and l4 � 22.87.
�2 ! �2 defined by ga,b�x, y� � ��� fa�x�, fb� y����. We as-
sume that computation uses fixed precision with machine
´ � 10215; then it follows from the results above that
the Stagger-and-Step method will not work for a � 3,
b � 20, since the intervals of minimal escape time do not
intersect. Indeed, no numerical method based on fixed
escape times will be able to generate trajectories lying
in a d-neighborhood of the chaotic saddle. However, if
one computes the Stagger-and-Step method in fixed preci-
sion with machine ´ � 10225, then the Stagger-and-Step
method generates a numerical trajectory on the chaotic
saddle of the map ga,b for a � 3, b � 20.

In summary, we use the Stagger method to find points
with high escape times, for example, to initialize the
Stagger-and-Step method. The Stagger-and-Step method
is the first general, but simple, method for finding trajecto-
ries on chaotic saddles, trajectories whose statistics (such
as Lyapunov exponents) can be computed directly. In
addition, it may be used for computing the dimension of
a chaotic saddle. Because of limited computer precision,
the method might fail if the ratio between two positive
Lyapunov numbers of a system is too big, e.g., if two of
the Lyapunov numbers are 100 and 1.01. We expect the
Stagger-and-Step method to be a useful additional tool in
analyzing the dynamics of fluids, lasers, and transition to
turbulence in shear flows.
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