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On the Significance of the Vector Potential Squared
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We consider the gauge potential A and argue that the minimum value of the volume integral of A2 (in
Euclidean space) may have physical meaning, particularly in connection with the existence of topological
structures. A lattice simulation comparing compact and noncompact “photodynamics” shows a jump in
this quantity at the phase transition, supporting this idea.
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Introduction.—Physical quantities should be gauge in-
variant. At first glance this might seem to imply that only
expressions involving the fields (E and B in electromag-
netism) and not the potentials (A) should appear in physi-
cally meaningful quantities, and in fact this is usually true.
However, this logic can be misleading. A well known case
in point is the loop integral

H
A dx. Although only A, and

not the fields, appears explicitly in this construction, it is
so devised that it leads to a gauge invariant and indeed an
interesting object.

We would like to point out the interest of another quan-
tity constructed from A itself: the volume integral of A2�x�.
One may come upon this thought when considering the role
of condensates in quantum field theory. Vacuum conden-
sates have been a useful way to understand and characterize
the dynamics of QCD and other field theories. The most
famous example is perhaps the quark condensate:

�0jq̄qj0� fi 0 , (1)

where q stands for light u or d quarks. In the realistic
case of negligibly small quark mass, a nonvanishing value
of the quark condensate signals spontaneous breaking of
chiral symmetry.

In the framework of the QCD sum rules [1] one also
used the concept of the gluon condensate

�0jas�Ga
mn�2j0� fi 0 . (2)

Here the nonvanishing value of the condensate signifies
not the breaking of a symmetry but rather the presence of
nonperturbative fields in the vacuum.

This gluon condensate would appear to be the sim-
plest quantity characterizing nonperturbative vacuum
fields. It has dimension d � 4, leading one to assume
that the leading nonperturbative corrections in the QCD
sum rules at large external momentum Q are of order
�0jas�Ga

mn�2j0��Q4.
Now there is of course an even simpler candidate for a

condensate, namely, just the square of the vector poten-
tial: A2. This is of dimension d � 2. However, such ex-
pressions seem not to be allowed since they appear gauge
noninvariant [2]; that is, one tends to think that physically
meaningful quantities must involve only the fields and not
the potentials and that an expression like A2, involving only
0031-9007�01�86(11)�2220(3)$15.00
potentials, could not be meaningful. However, this is not
necessarily true, as we now illustrate on the simple ex-
ample of magnetostatics.

Magnetostatics.—Consider a situation with some mag-
netic field B present in space. There is a considerable
amount of freedom in the choice of A. However, since
there is a nonzero magnetic field B � = 3 A, we know
some nonzero A must be present; A cannot be zero every-
where. Now consider the volume integral of A2�x�. It is
a positive quantity and cannot be zero. It must then have
some minimum value. Therefore of all the possible A con-
figurations which yield the given B the one (or the ones)
with the smallest integral of A2 has in a sense an invariant
significance. We then examine the possible significance of
the resulting quantity, the volume integral of A2�x� at its
minimum value. We will call this A2

min.
The connection between the “minimum A2” require-

ment and a more familiar gauge condition may be seen
as follows. Suppose for a given field configuration thatR

A2 d3x is at its minimum value; then under a gauge trans-
formation it is stationary. Considering A ! A 1 =f for
infinitesimal f we have

R
A=f d3x � 0 and integrating

by parts
Z

f=Ad3x 1 surface terms � 0 . (3)

Since f is arbitrary we conclude that, up to the surface
terms and the question of local minima in A2, the minimum
A2 condition is equivalent to the familiar gauge condition

=A � 0 . (4)

Not surprisingly the minimum A2 requirement is connected
with that gauge condition which is invariant, i.e., makes no
reference to any particular direction.

We emphasize, however, that our interest is focused not
so much on the minimization of A2 as a gauge condition
as on the value of the quantity itself. This is somewhat
analogous to the role of the action in classical and quantum
mechanics. In classical mechanics one simply minimizes
the action but is not particularly concerned with its actual
value. When one comes to quantum mechanics, however,
it is recognized that there is a significance to the value of
the action itself.
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Furthermore, it appears that A2
min is sensitive to, or

measures in some way, the existence of nontrivial struc-
tures in the system under consideration. This is suggested
by the comparison of two situations, both with no mag-
netic field. Let one be simple empty space with B � 0,
while the other has a nontrivial topology with the pres-
ence of a tube or string containing magnetic flux, like
a “cosmic string” or a vortex in superconductivity. In
the first case we have simply no A and so A2

min � 0.
In the second case, due to the flux F in the tube or
string I

A dx �
Z

H ? ds � F , (5)

and A cannot be zero in the surrounding space even though
the magnetic field is absent. This example suggests that
A2
min can signal the presence of nontrivial topological

structures.
The logical situation concerning A2

min resembles some-
what that of the question of the energy of a particle in
relativity. The energy of a particle is of course a frame
dependent quantity. However, the minimum energy, which
is the energy in the rest frame, has an invariant meaning,
namely, the mass. In going to the rest frame of the particle
we do make a certain choice of frame, but nevertheless the
mass is an undeniably meaningful quantity [3].

Of course the mass also has an explicitly invariant ex-
pression, m2 � E2 2 P2, and the loop integral

H
A dx

can, via Stokes theorem, be expressed in term of the fields.
Analogously, is there an expression for A2

min directly in
terms of the fields?

Indeed there is the vector relation [4]

Z

A2�x� d3x �
1

4p

Z
d3x d3x0 �= 3 A�x�� ? �= 3 A�x0��

jx 2 x0j
1

1
4p

Z
d3x d3x0 �= ? A�x�� �= ? A�x0��

jx 2 x0j

1 surface terms. (6)

Each of the two terms is positive; hence (up to the surface term question) we can minimize the integral of A2 by choosing
= ? A � 0. With this choice the integral of A2 is minimal in accord with our above remarks and is expressed only in
terms of the magnetic field = 3 A:

A2
min �

1
4p

Z
d3x d3x0 B�x� ? B�x0�

jx 2 x0j
1 surface terms. (7)

Thus we can trade, so to speak, apparent locality for explicit gauge invariance.
It will be seen that the arguments of this section carry over to four (or more) dimensions directly, as long as the metric

is Euclidean. For example, in four dimensions Eq. (6) becomes
Z

A2�x� d4x �
1

2p2

Z
d4x d4x0

�Fmn�x�� �Fmn�x0��
�x 2 x0�2 1

1
2p2

Z
d4x d4x0

�≠mAm�x�� �≠nAn�x0��
�x 2 x0�2 1 surface terms. (8)
Again setting the second term to zero, we obtain the four
dimensional analog of Eq. (7).

Quantum field theory.—Returning now to quantum field
theory and vacuum condensates, we examine the sugges-
tion that A2

min, now the expectation value of an operator, is
sensitive to or measures the presence of topological struc-
tures in some way.

A simple model we can investigate in this regard is “pho-
todynamics,” i.e., the theory with the Lagrangian density

L �
1

4e2 �Fmn�2. (9)

This model can be studied in two realizations, compact and
noncompact. While the noncompact realization is just the
theory of free photons, it is known that the compact realiza-
tion has nontrivial properties, including a phase transition
near e2 	 1 with a condensation of magnetic monopoles
[5] (for review, see, e.g., [6]). Since the monopoles are the
sources of nonzero magnetic flux, we would expect A2

min
to be sensitive to the phase transition.

We can test these ideas in a numerical simulation by
considering the difference of A2

min calculated in the two
realizations. We take the noncompact theory, given by the
action (we work in four Euclidean dimensions)
Snon�F� �
1

4e2

Z
d4x �Fmn�2, (10)

and the compact theory where

Scom�F� �
1

2e2

Z
d4x �1 2 cos�Fmn�2� , (11)

and we examine the difference

z �e2� �
Z

DA A2e2Scom 2
Z

DA A2e2Snon , (12)

where
R

A2 is at its minimum for each gauge equivalent
configuration.

We do this in a lattice formulation, using a 124 lattice
with periodic boundary conditions. A2 is then measured
in units of the lattice spacing. DA is normalized so thatR
DA e2S � 1, with A�x� running essentially from 2`

to 1` in the noncompact case and from 2p to 1p in
the compact case. The minimum A2 condition is enforced
by an iterative procedure: given a certain A configuration
on the lattice links, a gauge function a�x� (giving a new
potential, A 2 =a) is repeatedly adjusted so as to reduce
the volume integral of A2. Each pass works outward from
2221
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FIG. 1. z �e2� in units of the lattice spacing as a
function of b � 1�e2 showing the phase transition at
b � 1�e2 	 1.0.

an arbitrary lattice point and the procedure stops when the
reduction is less than a certain amount.

Figure 1 shows the results of the numerical simulation.
The sharp jump in z �e2� at the phase transition supports
the idea that A2

min is a measure of the presence of the
monoples and their associated strings, present for e2 $ 1.
The fact that z jumps to zero is related to the particularly
simple aspect of this model, that the small e2 sectors of
the compact and the noncompact theory have the same
behavior.

With these numerical calculations we have studied the
ground state. When one inserts an external monopole, it is
also possible to show the differing response of A2

min in the
two theories by analytic arguments [7].

Many open and interesting questions remain, particu-
larly concerning the non-Abelian case and the role of a
d � 2 condensate in QCD. We hope to deal with some of
them in future work [7].

We are thankful to V. A. Novikov and M. I. Polikarpov
for useful discussions.
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