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We investigate a new mechanism for the cosmological QCD phase transition: inhomogeneous nucle-
ation. The primordial temperature fluctuations, measured to be dT�T � 1025, are larger than the tiny
temperature interval in which bubbles would form in the standard picture of homogeneous nucleation.
Thus the bubbles nucleate at cold spots. We find the typical distance between bubble centers to be a
few meters. This exceeds the estimates from homogeneous nucleation by 2 orders of magnitude. The
resulting baryon inhomogeneities may affect primordial nucleosynthesis.
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A separation of cosmic phases during a first-order QCD
transition [1] could give rise to inhomogeneous nucleosyn-
thesis [2–5]. During a thermal first-order phase transition
in a homogeneous medium bubbles nucleate due to statis-
tical fluctuations (homogeneous nucleation). Their mean
separation at nucleation introduces a scale for isothermal
inhomogeneities in the early Universe, which may influ-
ence the local neutron-to-proton ratio, providing inhomo-
geneous initial conditions for nucleosynthesis. The baryon
inhomogeneities may survive until the time of neutron
freeze-out, if the mean bubble nucleation distance, dnuc,
exceeds the diffusion length of the proton. Comparing
those scales at the time of the QCD transition, assuming
a thermodynamic transition temperature Tc � 150 MeV,
gives dnuc . 2 m [4]. The causal scale is set by the Hubble
distance at the QCD transition, dH � c�H � 10 km.

The order of the QCD transition and the values of its
parameters are still under debate. Nevertheless, there are
indications from lattice QCD calculations [6–10]. For
the physical masses of the quarks the order of the tran-
sition is still unclear [6,7]. Quenched QCD (no dynamical
quarks) shows a first-order phase transition with a small
latent heat, compared to the bag model, and a small sur-
face tension, compared to dimensional arguments [8]. We
assume that the QCD transition is of first order and that
the values from quenched lattice QCD (scaled appropri-
ately by the number of degrees of freedom) are typical
for the physical QCD transition. Based on these values
and homogeneous bubble nucleation a small supercooling,
Dsc � 1 2 Tf�Tc � 1024, and a tiny bubble nucleation
distance, dnuc � 1 cm, follow [11]. The actual nucleation
temperature is denoted by Tf .

We argue that the assumption of homogeneous nucle-
ation is violated in the early Universe by the inevitable
density perturbations from inflation or from other seeds
for structure formation. Those fluctuations in density and
temperature have been measured by COBE [12] to have an
amplitude of dT�T � 1025. The effect of the QCD tran-
sition on density perturbations [13,14] and gravitational
0031-9007�01�86(11)�2216(4)$15.00
waves [15] has been studied previously, while we inves-
tigate the effect of the density perturbations on the QCD
phase transition here. We conclude that a first-order QCD
transition induces an inhomogeneity scale of a few meters.
In comparison with heterogeneous nucleation via ad hoc
dirt [16], we do not introduce any new, unknown objects.
Our findings might have interesting implications for preci-
sion measurements of primordial abundances [4,5].

First-order phase transitions normally proceed via nu-
cleation of bubbles of the new phase. When the tempera-
ture is spatially uniform and no significant impurities are
present, the mechanism is homogeneous nucleation. The
probability to nucleate a bubble of the new phase per time
and volume is approximated by G � T4

c exp�2S�T ��. The
nucleation action S is the free energy difference of the sys-
tem with and without the nucleating bubble, divided by the
temperature.

Nucleation is a very rapid process, compared with the
extremely slow cooling of the Universe. The duration of
the nucleation period, Dtnuc, is found to be [3,17]

Dtnuc � 2
p1�3

dS�dtjtf

. (1)

The time tf is defined as the moment when the fraction of
space where nucleations still continue equals 1�e. The heat
flow preceding the deflagration fronts reheats the rest of the
Universe. We denote by yheat the effective speed by which
released latent heat propagates in sufficient amounts to shut
down nucleations. In practice, ydef , yheat , cs, where
ydef is the velocity of the deflagration front and cs is the
sound speed [18]. In the unlikely case of detonations yheat
should be replaced by the velocity of the phase boundary
in all expressions that follow.

The mean distance between nucleation centers, mea-
sured immediately after the transition completed, is

dnuc,hom � 2yheatDtnuc . (2)

This nucleation distance sets the spatial scale for baryon
number inhomogeneities.
© 2001 The American Physical Society



VOLUME 86, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 12 MARCH 2001
Lattice simulations [9,10] imply that in real-world QCD
the energy density must change very rapidly in a narrow
temperature interval. This can be seen from the micro-
scopic sound speed in the quark phase, cs � �≠p�≠´�1�2

S .
Lattice QCD indicates that 3c2

s �Tc� � O �0.1� [10]. Thus,
the cosmological time-temperature relation is strongly
modified already before the nucleations, due to

dT
dt

� 23c2
s

T
tH

, (3)

where tH � 1�H � �3M2
pl�8p´q�1�2 with ´q being the

energy density in the quark phase. This behavior of the
sound speed increases the nucleation distance because of
the proportionality Dtnuc ~ 1��3c2

s �Tf�� [11].
In the thin-wall approximation the nucleation action has

the following explicit expression:

S�T � �
C2

�1 2 T�Tc�2 , C � 4

r
p

3
s3�2

l
p

Tc
, (4)

for small supercooling. Assuming further that cs does
not change very much during supercooling, the following
relation holds for the supercooling and nucleation scales:

Dtsc

Dtnuc
�

Dsc

Dnuc
�

2
p1�3 S̄ . (5)

Here we denote by D a relative (dimensionless) tempera-
ture interval and by Dt a dimensionful time interval. S̄ �
S�Tf � is the critical nucleation action, S̄ � O �100�.

Surface tension and latent heat are provided by lattice
simulations with quenched QCD only, giving the values
s � 0.015T3

c , l � 1.4T4
c [8]. Scaling the latent heat for

the physical QCD leads us to take l � 3T4
c .

With these values for the latent heat and surface tension,
the amount of supercooling is Dsc � 2.3 3 1024. From
Eq. (5) it follows that Dnuc � 1.5 3 1026. Substituting
3c2

s � 0.1 into Eq. (3), we find Dtnuc � 1.5 3 1025tH

for the duration of the nucleation period. The nucle-
ation distance depends on the unknown velocity yheat in
Eq. (2). With the value 0.1 for yheat, the nucleation dis-
tance dnuc,hom would have the value 2.9 3 1026dH . One
should take these values with caution, due to large uncer-
tainties in l and s. As our reference set of parameters, we
take Dsc � 1024, Dnuc � 1026, and Dtnuc � 1025tH .

In the real Universe the local temperature of the radia-
tion fluid fluctuates. We decompose the local temperature
T �t, x� into the mean temperature T̄ �t� and the perturba-
tion dT�t, x�. The temperature contrast is denoted by D �
dT�T̄ . On subhorizon scales in the radiation dominated
epoch, each Fourier coefficient D�t, k� oscillates with con-
stant amplitude, which we denote by DT �k�. Inflation pre-
dicts a Gaussian distribution,

p�D� dD �
1

p
2p D

rms
T

exp

µ
2

1
2

D2

�Drms
T �2

∂
dD . (6)

We find [19] for the COBE normalized [12] rms tempera-
ture fluctuation of the radiation fluid (not of cold dark
matter) D

rms
T � 1.0 3 1024 for a primordial Harrison-
Zel’dovich spectrum. The change of the equation of state
prior to the QCD transition modifies the temperature-
energy density relation, D � c2

sd´��´ 1 p�. We may
neglect the pressure p near the critical temperature since
p ø ´q at Tc. On the other hand, the drop of the sound
speed enhances the amplitude of the density fluctuations
proportional to c21�2

s [14]. Putting all those effects to-
gether and allowing for a tilt in the power spectrum, the
COBE normalized rms temperature fluctuation reads

Drms
T � 1024�3c2

s �3�4

µ
k
k0

∂�n21��2

, (7)

where k0 � �aH�0. For a Harrison-Zel’dovich spectrum
(n � 1) and 3c2

s � 0.1, we find D
rms
T � 2 3 1025.

A small scale cutoff in the spectrum of primordial tem-
perature fluctuations comes from collisional damping by
neutrinos [14,20]. The interaction rate of neutrinos is
�G2

FT5. This has to be compared with the angular fre-
quency cskph of the acoustic oscillations. At the QCD tran-
sition neutrinos travel freely on scales ln � 4 3 1026dH .
Fluctuations below the diffusion scale of neutrinos are
washed out,

ldiff �

∑Z tc

0
ln�t̄� dt̄

∏1�2

� 7 3 1024dH . (8)

In Ref. [14] the damping scale from collisional damping
by neutrinos has been calculated to be kph

n � 104H at T �
150 MeV. The estimate (8) is consistent with this damping
scale. We assume lsmooth � 1024dH . The compression
time scale for a homogeneous volume �l3

smooth is dt �
plsmooth�cs � 1023tH . Since dt ¿ Dtnuc the tempera-
ture fluctuations are frozen with respect to the time scale
of nucleations. As long as lsmooth exceeds the Fermi scale
homogeneous bubble nucleation applies within these small
homogeneous volumes. This is a crucial difference to the
scenario of heterogeneous nucleation [16], where bubbles
nucleate at ad hoc impurities.

Let us now investigate bubble nucleation in a Universe
with spatially inhomogeneous temperature distribution.
Bubble nucleation effectively takes place while the tem-
perature drops by the tiny amount Dnuc. To determine
the mechanism of nucleation, we compare Dnuc with the
rms temperature fluctuation D

rms
T : (1) If D

rms
T , Dnuc,

the probability to nucleate a bubble at a given time is
homogeneous in space. This is the case of homogeneous
nucleation. (2) If D

rms
T . Dnuc, the probability to nucleate

a bubble at a given time is inhomogeneous in space. We
call this inhomogeneous nucleation.

The quenched lattice QCD data and a COBE normal-
ized flat spectrum lead to the values Dnuc � 1026 and
D

rms
T � 1025. We conclude that the cosmological QCD

transition may proceed via inhomogeneous nucleation. A
sketch of inhomogeneous nucleation is shown in Fig. 1.
The basic idea is that temperature inhomogeneities deter-
mine the location of bubble nucleation. Bubbles nucleate
first in the cold regions.
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FIG. 1. Sketch of a first-order QCD transition in the inhomo-
geneous Universe. At t1 the first hadronic bubbles (H) nucleate
at the coldest spots (light gray), while most of the Universe
remains in the quark phase (Q). At t2 the bubbles inside the
cold spots have merged and have grown to bubbles as large as
the temperature fluctuation scale. At t3 the transition is almost
finished. The last quark droplets are found in the hottest spots
(dark gray).

The temperature change at a given point is governed
by the Hubble expansion and by the temperature fluctua-
tions. For the fastest changing fluctuations, with angular
frequency cs�lsmooth, we find

dT �t, x�
dt

�
T̄
tH

∑
23c2

s 1 O

µ
DT

tH

dt

∂∏
. (9)

The Hubble expansion is the dominant contribution, as
typical values are 3c2

s � 0.1 from quenched lattice QCD
and D

rms
T tH�dt � 0.01 from the discussion above. This

means that the local temperature never does increase, ex-
cept by the released latent heat during bubble growth.

To gain some insight in the physics of inhomogeneous
nucleation, let us first inspect a simplified case. We have
some randomly distributed cold spheres of diameter lsmooth
with equal and uniform temperature, which is by the
amount D

rms
T Tc smaller than the again uniform tempera-

ture in the rest of the Universe. When the temperature in
the cold spots has dropped to Tf , homogeneous nucleation
takes place in them. Because of the Hubble expansion the
rest of the Universe would need the time

Dtcool �
D

rms
T

3c2
s

tH (10)

to cool down to Tf . Inside each cold spot there is a
large number of tiny hadron bubbles, assumed to grow
as deflagrations. They merge within Dtcool if Dnuc ,

�ydef�yheat�Drms
T . This condition should be clearly fulfilled

for our reference set of parameters. Thus the cold spots
have been fully transformed into the hadron phase while
2218
the rest of the Universe still is in the quark phase. The
latent heat released in a cold spot propagates in all direc-
tions, which provides the length scale

lheat � 2yheatDtcool . (11)

If the typical distance from the boundary of a cold spot to
the boundary of a neighboring cold spot is less than lheat,
then no hadronic bubbles can nucleate in the intervening
space. In this case the nucleation process is totally domi-
nated by the cold spots, and the average distance between
their centers gives the spatial scale for the resulting inho-
mogeneities. In the following analysis for a more realistic
scenario we concentrate in this case, lheat . lsmooth.

The real Universe consists of smooth patches of typical
linear size lsmooth, their temperatures given by the distribu-
tion (6). As discussed above, the merging of tiny bubbles
within a cold spot can here be treated as an instantaneous
process. The fraction of space that is not reheated by the
released latent heat (and not transformed to hadron phase)
is given at time t by

f�t� � 1 2
Z t

0
Gihn�t0�V �t, t0� dt0, (12)

where we neglect overlap and merging of heat fronts. At
time t heat, coming from a cold spot which was trans-
formed into hadron phase at time t0, occupies the volume
V �t, t0� � �4p�3� �lsmooth�2 1 yheat�t 2 t0��3. The other
factor in Eq. (12), Gihn, is the rate per volume at which
smooth patches transform into the new phase, as a function
of the mean temperature T � T̄ �t�. Gihn is proportional to
the fraction of space for which temperature is in the inter-
val �Tf , Tf�1 1 dD��. This fraction of space is given by
Eq. (6) with D � Tf�T 2 1. Rewriting dD by means of
Eq. (3) leads to the expression

Gihn � 3c2
s

Tf

T
1

tHVsmooth
p

µ
D �

Tf

T
2 1

∂
, (13)

where the relevant physical volume is Vsmooth �
�4p�3� �lsmooth�2�3.

The end of the nucleation period, tihn, is defined through
the condition f�tihn� � 0. We introduce the variables N �
�1 2 Tf�T ��D

rms
T and N � N�tihn�. Since cs may be

assumed to be constant during the tiny temperature inter-
val where nucleations actually take place, we find from
Eq. (3): 1 2 t�tihn � 2��3c2

s �Drms
T �N 2 N �. Putting

everything together we determine N from

l3
heat

l3
smooth

Z `

N
dN

e2�1�2�N2

p
2p

µ
lsmooth

lheat
1 N 2 N

∂3

� 1 .

(14)

The COBE normalized spectrum gives lheat�lsmooth �
2yheat�3c2

s �21�4�k�k0��n21��2. For lheat�lsmooth � 1, 2, 5,
10 we find N � 0.8, 1.4, 2.1, 2.6, respectively.

The effective nucleation distance in inhomogeneous nu-
cleation is defined from the number density of those cold
spots that acted as nucleation centers, dnuc,ihn � n21�3.
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We find

dnuc,ihn �
∑Z tihn

0
Gihn�t� dt

∏21�3

(15)

�

Ω
3
p

�1 2 erf�N �
p

2 ��
æ21�3

lsmooth . (16)

With the above values lheat�lsmooth � 1, 2, 5, 10 we get
dnuc,ihn � 1.4, 1.8, 3.0, 4.8 3 lsmooth, where lsmooth � 1 m.

For a COBE normalized spectrum without any tilt and
with a tilt of n 2 1 � 0.2 [where �ksmooth�k0�0.1 � 25],
together with 3c2

s � 0.1 and yheat � 0.1, we find the es-
timate lheat�lsmooth � 0.4 and 9, correspondingly. Notice
that the values of yheat and 3c2

s are in principle unknown.
Anyway, we can conclude that the case lheat . lsmooth is a
realistic possibility.

With 2yheat�3c2
s �21�4�1024dH�lsmooth� , 1 and without

positive tilt we are in the region lheat , lsmooth, where the
geometry is more complicated and the above quantitative
analysis does not apply. In this situation nucleations take
place in the most common cold spots (N � 1), which are
very close to each other. We expect a structure of intercon-
nected baryon-depleted and baryon-enriched layers with
typical surface l2

smooth and thickness ldef � ydefDtcool. In
between dnuc,hom would be the relevant length scale of in-
homogeneities. An accurate analysis of this case requires
computer simulations, which is beyond the scope of the
present work. However, it is clear that the result will be
different compared with homogeneous nucleation.

We emphasize that inhomogeneous and heterogeneous
nucleation [16] are genuinely different mechanisms, al-
though they give the same typical scale of a few meters by
chance. If latent heat and surface tension of QCD would
turn out to reduce Dsc to, e.g., 1026, instead of 1024, the
maximal heterogeneous nucleation distance would fall to
the centimeter scale, whereas on the distance in inhomo-
geneous nucleation this would have no effect.

We have shown that inhomogeneous nucleation during
the QCD transition can give rise to an inhomogeneity scale
exceeding the proton diffusion scale. The resulting baryon
inhomogeneities could provide inhomogeneous initial con-
ditions for nucleosynthesis. Observable deviations from
the element abundances predicted by homogeneous nu-
cleosynthesis seem to be possible in that case [4,5].

In conclusion, we found that inhomogeneous nucleation
leads to nucleation distances that exceed by 2 orders of
magnitude estimates based on homogeneous nucleation.
We emphasize that this new effect appears for the (today)
most probable range of cosmological and QCD parameters.
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