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Fractional Transport Equations for Lévy Stable Processes
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The influence functional method of Feynman and Vernon is used to obtain a quantum master equation
for a system subjected to a Lévy stable random force. The corresponding classical transport equations for
the Wigner function are then derived, both in the limits of weak and strong friction. These are fractional
extensions of the Klein-Kramers and the Smoluchowski equations. It is shown that the fractional charac-
ter acquired by the position in the Smoluchowski equation follows from the fractional character of the
momentum in the Klein-Kramers equation. Connections among fractional transport equations recently
proposed are clarified.
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In the theory of Brownian motion one is interested in the
time evolution of a system coupled to a large environment.
The effect of the coupling is modeled by a stochastic force
F�t� with a given probability density P�F�t��. The dynam-
ics of a Brownian particle of mass M in the presence of an
external potential U�x� is then described by the Langevin
equation

Mẍ�t� 1 g �x�t� 1 U 0�x� � j�t� , (1)

where F�t� has been divided into a mean force proportional
to the velocity, the friction force 2g �x�t�, plus a fluctuat-
ing part j�t�. In the usual treatment of Brownian motion
[1], it is assumed that the random force is Gaussian dis-
tributed with variance �j�t�j�t0�� � 2Dd�t 2 t0� where
D � gkT is the diffusion coefficient, and the Langevin
equation is shown to be fully equivalent to a phase-space
equation — the Klein-Kramers equation. In the limit of
strong friction, the inertial term in the Langevin equation
can be neglected and the Klein-Kramers equation reduces
to the Smoluchowski equation. However, it has become
clear in recent years that many processes in nature, such
as anomalous diffusion (for a review, see [2–4]), can-
not be described by ordinary (Gaussian) Brownian mo-
tion. A case in point is the so-called Lévy flight with a
stochastic force distributed according to Lévy stable sta-
tistics and which has been introduced in connection with
superdiffusion [5,6]. Experimental observations of Lévy
flights have been reported in micelle systems [7], in two-
dimensional rotating flows [8], and in subrecoil laser cool-
ing [9]. In this Letter we consider the generalization of
transport equations to describe Lévy stable motion. This
question has already been addressed in the past by using
various methods [5,6,10–12], in particular, the continuous
time random walk formalism [13,14]. However, most of
these approaches were limited to coordinate space only.
Here we present a derivation of the Klein-Kramers equa-
tion for a Lévy stable process. We consider both the case
of a symmetric and asymmetric probability distribution.
As our main tool, we employ the influence functional for-
malism developed by Feynman and Vernon [15,16].
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If initially system and environment are not correlated
then, according to Feynman and Vernon [15,16], the den-
sity operator of the system at time t can be written in co-
ordinate representation as

r�x, x0, t� �
Z

F �x, x0� exp
i
h̄

�S�x� 2 S�x0��

3 r�x0, x0
0, 0�D x�t�D x0�t� dx0 dx0

0 .

(2)

Here the entire information on the coupling to the environ-
ment is contained in the influence functional F �x, x0� �
F� x�t�2x0�t�

h̄ �, where F�k�t�� is the characteristic functional
of the probability density P�F�t��,

F�k�t�� �
Z

exp

Ω
i
Z

F�t�k�t� dt

æ
P�F�t��DF�t� . (3)

If F�t� is Gaussian distributed with mean �F�t�� � g�t�
and variance ��F�t� 2 g�t�� �F�t0� 2 g�t0��� � D�t 2 t0�,
the characteristic functional is given by

FG�k�t�� � exp

Ω
i
Z

g�t�k�t� dt

2
1
2

ZZ
D�t 2 t0�k�t�k�t0� dt dt0

æ
.

(4)

If we further assume that the friction force is proportional
to the velocity of the system, g�t� � 2g� �x�t� 1 �x0�t��	2,
and that the variance is delta correlated in time, D�t 2

t0� � 2Dd�t 2 t0�, then the influence functional can be
written in the form

F �x, x0� � exp
i
h̄

Z Ω
2

g

2
�x�t� 2 x0�t�� � �x�t� 1 �x0�t��

1 i
D
h̄

�x�t� 2 x0�t��2

æ
dt . (5)

By means of a small time expansion, Eq. (2) can be trans-
formed into a differential equation for the density operator.
Using the influence functional (5), this results in the mas-
ter equation
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ih̄
≠r�x, x0, t�

≠t
�

∑
H�x� 2 H�x0� 1

g

2M
�x 2 x0� �px 2 px0�

2 i
D
h̄

�x 2 x0�2

∏
r�x, x0, t� , (6)

where H�x� � p2
x	2M 1 U�x� is the Hamiltonian of the

system. We recognize in Eq. (6) the master equation
for quantum Brownian motion derived by Caldeira and
Leggett using the oscillator bath model [17] (see also [18]).

In the case of a Lévy stable distribution, the character-
istic functional is given by [19]
FL�k�t�� � exp

Ω
i
Z

g�t�k�t� dt

2
Z

C�t� jk�t�ja
∑
1 1 ib

k
jkj

tan
ap

2

∏
dt

æ
,

(7)

where a (0 , a # 2) is the characteristic exponent (or
stability index) of the distribution and b �21 # b # 1�
is the asymmetry parameter [20]. We assume as before that
g�t� is proportional to the velocity of the system and take
C�t� � D constant. This leads to the following quantum
master equation for a Lévy stable process
ih̄
≠r�x, x0, t�

≠t
�

∑
H�x� 2 H�x0� 1

g

2M
�x 2 x0� �px 2 px0�

2 i
D

h̄a21 jx 2 x0ja21

µ
jx 2 x0j 1 ib tan

ap

2
�x 2 x0�

∂∏
r�x, x0, t� . (8)
For a � 2 the master equation (8) reduces to the Caldeira-
Leggett equation (6). In order to obtain the correspond-
ing classical transport equation, we introduce the Wigner
transform of the density matrix

f�q, p, t� �
1

2p h̄

Z `

2`
dr exp

∑
2

ipr
h̄

∏

3 r

µ
q 1

r
2

, q 2
r
2

, t

∂
. (9)

Applying the Wigner transform to Eq. (8) and keeping only
terms in leading order in h̄, we obtain the equation

≠f
≠t

� 2
p
M

≠f
≠q

1 U 0�q�
≠f
≠p

1
g

M
≠

≠p
�pf�

1 gkT

∑
≠af

≠jpja
1 b tan

ap

2
≠

≠p
≠a21f

≠jpja21

∏
,

(10)

where we have introduced the Riesz fractional derivative
which is defined through its Fourier transform as [21,22]

2
≠a

≠jpja
�

1
2p

Z `

2`
dy exp�2ipy� j yja . (11)

The fractional equation (10) for the distribution func-
tion f�q, p, t� describes the complete dynamics of the
Brownian system in phase space, for both symmetric and
asymmetric Lévy stochastic forces. In the latter case,
we observe an additional contribution to the friction
term which may be of relevance for the description
of anomalous transport in anisotropic media [23]. For
a � 2 we recover the ordinary Klein-Kramers equation.
For the particular case of a symmetric distribution, an
equation similar to Eq. (10), expressed with a variant of
the Weyl derivative, has been obtained by Peseckis [11].
It is worthwhile to note that the fractional character in
Eq. (10) is carried by the momentum. In the limit of high
friction, one may exploit the rapid relaxation of the mo-
mentum distribution to a stationary distribution, to write
down a simplified equation for the reduced distribution
function in configuration space, f̂�q, t� �
R

dp f�q, p, t�.
Employing the systematic expansion method developed
in Ref. [24], we obtain the following fractional extension
of the Smoluchowski equation [the derivation of Eq. (12)
will be sketched below]

≠f̂
≠t

�
1
g

≠

≠q
�U 0�q�f̂�

1
kT
g

∑
≠a f̂
≠jqja

1 b tan
ap

2
≠

≠q
≠a21f̂
≠jqja21

∏
.

(12)

We see that the fractional character has been transferred to
the position. This observation settles an apparent point
of confusion in the literature. Indeed, in most of the
phenomenological fractional generalizations of transport
equations to phase space, it is unclear whether the frac-
tional derivative should be taken with respect to position
or momentum or even both (see, e.g., the discussion in
Refs. [25,26]). Our findings show that for a Lévy flight the
fractional character acquired by the position in the Smolu-
chowski equation follows from the fractional character of
the momentum in the Klein-Kramers equation. An impor-
tant consequence of Eq. (10) is that, for a harmonic po-
tential, it does not possess a stationary solution for a fi 2
(contrary to the claim made in Ref. [11]): Since the vari-
ance of the Lévy force is divergent, an infinite amount of
energy which cannot be balanced by the dissipation is sup-
plied to the system [10]. An approximate stationary solu-
tion can be found only in the limit of very large friction.
It is given by the product of the stationary momentum dis-
tribution with the stationary position solution of Eq. (12).
Both are Lévy distributions, which means that their vari-
ances and all higher moments are infinite (they are finite
in the Gaussian case a � 2).

Let us now discuss the connections of the fractional
Smoluchowski equation (12) to the equations considered
in the literature. We first begin with the case of a symmet-
ric Lévy force. Equation (12) with b � 0 has been studied
2209
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in detail in Ref. [6] for the cases of a free flight, a particle
subjected to a constant force and to a linear Hookean force.
Moreover, it is interesting to note that Eq. (12) has been
recently derived in Ref. [14] from a generalized master
equation for a nonhomogeneous random walk. The cor-
responding fractional diffusion equation obtained by set-
ting U�q� � 0 has also been considered in Ref. [22]. On
the other hand, for an asymmetric random force, b fi 0,
the Smoluchowski equation (12) is a generalization to a
velocity dependent damping force of a fractional diffu-
sion equation recently obtained in Ref. [12] starting from
a Langevin-like equation.

In a recent paper, Kusnezov et al. [25] proposed a
fractional Klein-Kramers equation which was obtained
as the classical limit of what they call a quantum Lévy
process. Their derivation is based on a microscopic
random-matrix model for a system coupled to a chaotic
environment. These authors showed that for an environ-
ment with constant average level density [or equivalently
with infinite temperature bT � �kT �21 � 0], the reduced
density matrix displays the behavior of a free Lévy flight.
However, the dynamics described by their fractional
transport equation for finite temperature bT fi 0 is un-
known. Let us now examine that point. The characteristic
functional corresponding to their quantum master equation
can be written as

FQL�k�t�� � exp

Ω
i
Z

g�t�
a

2
sgnk�t� jk�t�ja21dt

2
Z

C�t� jk�t�ja dt

æ
. (13)

By comparing expression (13) to the characteristic func-
tional of a symmetric Lévy flight (7), we observe (i) that
the second terms on the right-hand side, those describ-
ing the fluctuation of the stochastic force, are equal, but
(ii) that the first terms, which are related to the mean, are
different. Since the latter are responsible for the dissipa-
tion, this implies that two expressions are identical only
for vanishing friction. Note that this is in agreement with
the results of Ref. [25], since the limit of vanishing fric-
tion precisely corresponds to bT � 0, as can be easily seen
from their Eq. (28). The fractional Kramers equation (27)
(with bT fi 0) given in Ref. [25] thus describes a system
subjected to a symmetric Lévy force, but with a mean fric-
tion force that is different from that of a Lévy flight. It is
straightforward to determine the mean value �FQL�t�� for
the process defined by Eq. (13). It is given at a particular
time t � t0 by [16]

�FQL�t0�� � 2i
dFQL�k�t��

dk�t0�

Ç
k�0

. (14)

Since a 2 1 # 1, the mean force �FQL�t0�� is divergent
[it is finite and equal to g�t0� only for a � 2]. Hence
both the first and the second moment of the process inves-
tigated by Kusnezov et al. are divergent. This has to be
2210
contrasted with the normal Lévy flight, where the mean is
finite and equal to �FL�t0�� � g�t0� for all values of a. In
addition, the quantum Lévy process has a stationary solu-
tion for a harmonically bound particle (since the damping
force is infinite, such a solution is expected to exist). It is
of the form exp�2a�p2	M 1 Mv2q2�	4kT �. Note that
this distribution is Gaussian. For a � 2 it reduces to the
Boltzmann distribution.

Finally, let us mention that fractional Klein-Kramers
equations, based on Riemann-Liouville fractional calculus,
have been recently proposed in Refs. [26,27]. These equa-
tions lead to nonexponential damping which can be ex-
pressed in terms of Mittag-Leffler functions. Their steady
state solution is given by the Boltzmann distribution.

We now return to the derivation of Eq. (12). For sim-
plicity we will consider only the case of a symmetric
probability distribution. For large g, the dynamics of the
Klein-Kramers equation (10) is dominated by the term
which contains the operator

C �
≠

≠p
p 1 MkT

≠a

≠jpja
. (15)

We shall look for an approximation to leading order in
�g	M�21 of Eq. (10) by using an eigenvalue method [24].
We denote by wn�p� the eigenfunctions of the operator C
and by 2n�n � 0, 1, 2, . . .� the corresponding eigenvalues.
We define the following raising and lowering operators
a1 � 2kT≠	≠p and a2 � MDa

p 1 p	kT , where the
operator Da

p obeys ≠Da
p 	≠p � ≠a	≠jpja . The two oper-

ators a1 and a2 satisfy C � 2a1a2 and �a2, a1� � 1
and we have further the ladder relations a1wn�p� �
�n 1 1�wn11�p� and a2wn�p� � �1 2 dn,0�wn21�p�.
Next we look for a solution of Eq. (10) in the form

f�q, p, t� � f̂�q, t�w0�p� 1

∑
g

M

∏21

f �1��q, p, t�

1

∑
g

M

∏22

f�2��q, p, t� 1 · · · (16)

and

≠f̂�q, t�
≠t

�

µ
≠�0� 1

∑
g

M

∏21

≠�1�

1

∑
g

M

∏22

≠�2� 1 · · ·

∂
f̂�q, t� , (17)

where the ≠�i� are linear differential operators which are
determined as follows: we substitute Eqs. (16) and (17)
into Eq. (10) and separate the different orders in �g	M�21.
The integrability condition then yields for the two lowest
orders

≠�0� � 0 and ≠�1� �
kT
M

≠

≠q

∑
Da

q 1
1

kT
U 0�q�

∏
.

(18)

The operator ≠�1� is precisely the one appearing in the
Smoluchowski equation (12).
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To conclude, using influence functional methods, we
gave the first derivation of a quantum master equation
for symmetric and asymmetric Lévy flights with viscous
damping. By taking the classical limit, we then obtained an
extension of the Klein-Kramers equation containing frac-
tional derivatives with respect to momentum. In the limit
of strong damping, this equation was shown to reduce to a
fractional Smoluchowski equation with fractional deriva-
tives with respect to position. Furthermore, for symmetric
Lévy stable laws, our results are in agreement with those
of Kusnezov et al. in the limit of vanishingly small fric-
tion. For nonzero friction, we found that the process de-
scribed by their fractional Kramers equation possesses a
divergent mean damping force. In the opposite limit of
strong friction, we recovered the fractional Fokker-Planck
equations considered in Refs. [6,14]. Finally, for the case
of asymmetric stable laws, we gave an extension to a ve-
locity dependent friction of a fractional diffusion equation
suggested in Ref. [12].
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