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We measure the decoherence of a spatially separated atomic superposition due to spontaneous photon
scattering. We observe a qualitative change in decoherence versus separation as the number of scattered
photons increases, and verify quantitatively the decoherence rate constant in the many-photon limit. Our
results illustrate an evolution of decoherence consistent with general models developed for a broad class

of decoherence phenomena.
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Decoherence is the result of entanglement between a
quantum system and an unobserved environment, and
manifests as the reduction of coherent superpositions into
incoherent mixtures. This reduction occurs more quickly
as the number of particles comprising a quantum system
increases, establishing decoherence as a fundamental limit
to large-scale quantum computation [1] and communi-
cation [2]. Progress in these fields therefore relies upon
understanding and correcting for decoherence effects.
On a macroscopic scale, decoherence is unavoidable and
explains the emergence of classical behavior in a world
governed by quantum mechanical laws.

Theoretical treatments of decoherence provide a descrip-
tion for the evolution of a system’s density matrix under
the influence of a specific environment. For spatial deco-
herence, various environments including a thermal bath of
harmonic oscillators [3], a scalar field [4], and an isotropic
distribution of scatterers [5,6] have been studied. In the
high-temperature or many scatterer limit, these models all
yield a diffusionlike master equation for the system’s spa-
tial density matrix, p(x, x'):

dp _ i 2 12

” - [H.pl = D7lx = x'Fp, (D
where H is the Hamiltonian for the isolated system and
D, the diffusion constant, depends on the details of
the system-environment coupling. Assuming negligible
internal dynamics, this equation predicts an exponential
reduction in coherence with time and with separation
squared [7]:
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plx,x' 1) = e_Dzlx_x/lztp(x,x/,O). (2)

Similar decoherence behavior arises and has been studied
in the context of an atom interacting with a high-Q cavity
[8] and trapped ions interacting with a fluctuating electric
field [9].

To investigate the distinct case of decoherence due to
scattering processes, we have studied the loss of spatial
coherence of atoms within an atom interferometer due to
spontaneous scattering of photons. In the many-photon
limit, this represents a simple case of the general models
above; we observe coherence loss consistent with Eq. (2)
and are able to derive the decay constant from first prin-
ciples. The few-photon limit is of a qualitatively different
character, and we have followed the smooth transition be-
tween these two regimes.

The atom interferometer [10] is realized by passing
a collimated, supersonic beam of Na atoms (velocity =
3000 m/s using a He carrier gas) through three diffraction
gratings arranged in the Mach-Zehnder geometry (Fig. 1).
Prior to the first grating, the atoms are collimated and op-
tically pumped into the 3S3|F = 2,m; = +2) ground
state. Two paths through the interferometer, separated by
up to 20 wm, overlap at the position of the third grat-
ing, forming a spatial interference pattern. This pattern is
masked by the third grating and the total transmitted flux is
detected using a 50 um hot wire. The interference pattern
is measured as an oscillating atomic flux versus grating po-
sition. Because the contrast of the interference pattern is
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FIG. 1. A schematic of our apparatus: A Mach-Zehnder in-

terferometer composed of three, evenly spaced, transmission
gratings. Within the interferometer, sodium atoms continuously
absorb and spontaneously emit photons from a variable intensity
laser beam. Decoherence due to spontaneous emission results
in reduced contrast interference fringes.

proportional to the coherence between the two paths, re-
duction in contrast is direct evidence of coherence loss.

The effective decohering environment consists of pho-
tons from a laser beam directed along the X axis which
intersects both interfering paths. The circularly polar-
ized laser light is tuned to the 351/2|2, +2) — 3P3/2|3, +3)
transition with wavelength A = 27 /kg = 590 nm. Be-
cause the atoms are dipole forbidden from decaying to any
state other than 35, /2|2, +2), they can continuously scat-
ter photons without falling out of resonance (the natural
linewidth is ~200 photon recoils wide).

At the intersection of the atomic beam and scattering
laser, each atom’s transverse wave function is peaked at
two positions which we label x and x + d. If a photon,
initially in momentum state |kq), scatters from this atom,
the two become entangled:

lg)i = (Ix) + lx + d)) ® lko)
D e lg) + lx + d) @ gy, (3)

where | ¢.) is the wave function of a photon spontaneously
emitted from position x and the factor e’ accounts for
the difference in spatial phase of the initial photon at the
two positions. Generalizing the entangled wave function
in Eq. (3) to a density matrix and tracing over a basis of
scattered photon states, the net effect of scattering on the
atom’s spatial density matrix is

ple,x +d) = plx,x + d)B(d), (4)

where B(d) is known as the decoherence function and has
the properties |3(d)| = 1and 8(0) = 1. The decoherence
function thus defined is equal to the inner product of the
two final photon states, which are identical apart from an
overall translation:

B(d) = e Uy | drra) = ™ le b,
= f dAk P(Ak)e 18k, (5)
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where the operator ky is the generator of photon transla-
tions along the X axis. The resulting decoherence func-
tion is the Fourier transform of a probability distribution
P(Ak), with Ak = k, — ko being the change in momen-
tum of the photon along the X axis.

Previous experiments [11,12] have measured the deco-
herence function for an atom which spontaneously scatters
a single photon. The theoretical prediction which these ex-
periments confirm is displayed as the solid line in Fig. 2.
Beneath an overall decay in coherence with distance, peri-
odic coherence revivals are observed. This shape follows
directly from the Fourier transform of the dipole radia-
tion pattern for spontaneous emission. It has also been
explained in terms of the ability of a single photon to pro-
vide which-path information [12]: the contrast drops to
zero when the path separation is approximately equal to
the resolving power of an ideal Heisenberg microscope
d = A/2, with revivals resulting from path ambiguity due
to diffraction structure in the image.

If several photons are scattered, and if successive scatter-
ing events are independent, the total decoherence function
includes one factor of B for each scattered photon:

Biow(d) = D P(n)B"(d). (6)
n=0

In our experiment, the total number of photons scattered
by an individual atom is intrinsically uncertain, but is de-
scribed by the distribution P(n) which can be measured or
calculated. The sum in Eq. (6) is a trace over this addi-
tional degree of freedom of the environment.

Figure 2 shows measurements of the decoherence func-
tion for laser intensities corresponding to an average num-
ber of scattered photons, 7, ranging from ~1 to ~8. At
each intensity, a reference contrast and phase was mea-
sured, with the scattering laser positioned such that the in-
terfering paths were completely overlapped (d = 0). We
then adjusted the longitudinal position of the scattering
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FIG. 2. The total decoherence function, |Byoail, measured as
the normalized contrast after spontaneous photon scattering. The
solid line is the single-photon decoherence function. Also dis-
played are the best fits from which we determine 7 = 0.9 (A),
1.4 (¢), 1.8 (O), 2.6 (V), and 8.2 (+).
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laser, z, to select specific path separations in the range
0 < d < 1.4X at which to measure the decoherence func-
tion (see Fig. 1). For each path separation, the ratio of
the measured atom interference contrast to the reference
contrast yields the magnitude of the decoherence function,
| Biota1(d)|. The difference between the measured atom in-
terference phase and the reference phase yields the phase
of the decoherence function.

We fit the data using Eq. (6) and taking P(n) =
exp[—2(n — 71)2/02]. This form was chosen as a good
approximation to Monte Carlo wave function calculations
of P(n) for our laser parameters. From the best fit
curves displayed in Fig. 2, values were extracted for 7
and o, which were consistent with, and more accurate
than, independent measurements of P(n) based on the
deflection and broadening of the atomic beam with the
scattering laser blocked versus unblocked.

In the regime d >> A, a single scattered photon suffices
to completely destroy the coherence between paths. Thus,
the nonzero asymptotic value (for 7 = 0.9 in Fig. 2) of the
decoherence function at large path separation is equal to
the fraction of atoms which scatter zero photons (i.e., deco-
herence is proportional to the atom-photon scattering cross
section). This phenomenon is a simple example of satura-
tion of decoherence [6,13]: the loss of coherence becomes
independent of path separation at a characteristic length
scale of the environment. A recent experiment by Cheng
and Raymer [14], involving loss of optical coherence due
to a disordered collection of polystyrene microspheres, has
features similar to our own: contrast loss was observed to
saturate when the path separation reached roughly the di-
ameter of the microspheres, and the asymptotic contrast
was proportional to the microsphere-light scattering cross
section.

As the average number of scattered photons increases,
the overall amount of decoherence increases, and the con-
trast revivals disappear. This behavior can be formalized
as the Fourier transform of the total momentum distribu-
tion of all scattered photons:

B"(d) = ] dAK P(AK)e'2K4, (7)

where AK = > | Ak;. Asn — o, the central limit theo-
rem predicts that P(AK) will tend towards a Gaussian with
mean nky and variance na’;% (where o = %ko is the rms
transverse momentum of an emitted photon). In the case
of spontaneous emission, P(AK) is approximately Gauss-
ian for n > 3 and the decoherence function reduces to

B"(d) = fdAK[e*U/Z)(AKfnko)Z/naz]emKd
= o~ (/2noid® ,~inked ®)

Inserting this expression into Eq. (6) and taking d/A < 1,
we find

lim Bioal(d) = ef(l/z)szzefmkod, 9
n—bOO

where
k> = no; + ok} (10)

is the variance of the total momentum transferred to the
atom from the scattered photons. The first term in Eq. (10)
comes from the trace over modes available to the sponta-
neously emitted photon, while the second is related to the
uncertainty in number of absorbed photons combined with
the fixed phase kod imparted by each.

If o, = /71 (i.e., Poissonian statistics), Eq. (9) predicts
an exponential decay in contrast with number of scattered
photons (k2 « 7). If in addition the scattering rate, ',
is constant, then 7 = I't and the decoherence has exactly
the exponential form derived from a master equation like
Eq. (1.

We have measured this exponential reduction of spatial
coherence by varying the average number of scattered pho-
tons, leaving the path separation fixed (Fig. 3). Theory
curves (solid lines) are based on Eq. (9) with o, deter-
mined from the broadening of the atomic beam due to the
momentum of the scattered photons. The product of the
two remaining free parameters, 7id, was obtained from
the measured phase of the decoherence function.

The data follow a nearly exponential decay with 7. The
upward trend at large 7 is a result of the finite size of
our hot-wire detector: the trace over final photon states
[Eq. (8)] must be restricted to those states which allow the
atom to reach the detector. As a result x in Eq. (9) is
replaced with ' where 1/x2 = 1/k% + 1/k5 and kg =
3.3(1)kg is our detector’s effective momentum acceptance.

In the previous single-photon experiment of Chapman
et al. [12] lost coherence was similarly “recovered” by
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FIG. 3. Loss of interfering contrast as a function of mean num-
ber of photons spontaneously scattered by atoms within the in-
terferometer. Each curve represents a different path separation:
d/x = 0.06 (A), 0.13 (¢), and 0.16 (O).
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positioning a hot-wire detector to count only atoms which
had scattered photons into a small range of momentum
states. This scheme required [15] that the atomic beam
width, o, be greater than the path separation, d, so that
the two interfering paths partially overlapped at the point
of scattering, and a scattered photon could not have pro-
vided complete which-path information, even if d > A.
The condition o, < d need not be satisfied to demon-
strate the features of decoherence in the current experi-
ment, however. Even when it is in principle possible to
recover some coherence by measuring the environment, if
no such attempt is made then the predicted loss of contrast
is independent of o,.

In the many-photon limit, the decoherence function we
have derived agrees with the solution to the master equa-
tion presented in the introduction. Comparing Eqs. (2) and
(9), taking into account the time varying intensity profile,
1(1), of the scattering light as experienced by atoms in the
beam, we identify x> = D?7 where 7 is the amount of
time needed to scatter 7i photons [i2 = [ T'(I(¢)) dt]. Be-
cause the atom-photon scattering interaction is well de-
fined, and our decohering environment well controlled, we
can accurately calculate the constant « (equivalently D)
for any laser parameters.

Displayed in Fig. 4 are data which demonstrate Gauss-
ian reduction in contrast as a function of path separation
for two different laser intensities. As before, we indepen-
dently determined 7 and o, for each intensity, and from
these values along with k; we calculate k' = 2.5(1)k for
the higher laser intensity and x’ = 1.8(1)kq for the lower.
Fitting the contrast data to Eq. (9) yields «’ = 2.39(5)ko
and «’ = 1.71(5)ko, within error of the calculated values.

Our system exhibits what have been referred to as the
“naive” [13] generalizations of decoherence phenomenon:
exponential loss of contrast with path separation squared
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FIG. 4. Loss of contrast in the many-photon regime. Over-
laid are theory curves generated from Eq. (9) using parameters
(@) 7 = 4.8(2), o, = 1.8(1) and (O) = = 8.1(3), o, = 3.5(1)
determined from independent beam deflection measurements.
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and with number of scattered particles. The similarity of
Eq. (1) to a diffusion equation [16] invites identification of
this type of decoherence with phase diffusion or a random
phase walk. To make tl}e identification explicit, we use the
identity |, +4) = e %] ¢.) to rewrite Eq. (3) as

scat.

)i 2 [x) @ ey + |x + d) ® e ole Rd| )
— f () + e hRM e 4 @) @ B (k] ).
(11)

In this expression for the entangled atom-photon wave
function, a photon state |k) corresponds to an atomic super-
position state with the phase between the two components
shifted by an amount A¢ = (k, — ko)d. Correlating in-
terference data with measurements of each scattered pho-
ton momentum [effectively a randomly sampled element
of the distribution P (k)] would allow complete recovery of
lost contrast. In the absence of such postprocessing, how-
ever, the phase of each atom’s interference fringes will
vary randomly, and their sum, the measured interference
pattern, will have reduced contrast. The phase diffusion
and (previously discussed) which-path pictures are equally
valid when the experimenter does not measure the scattered
photons [17].

In conclusion, we have studied the decoherence of a spa-
tial superposition due to photon scattering. Our data con-
firm theoretical predictions, and in the many-photon limit
exhibit features of decoherence which are quite general.
We have observed the exponential coherence loss with time
and path separation squared characteristic of this general
behavior, and we have for the first time predicted and ex-
perimentally verified the decoherence rate constant «. The
particular model we have explored is not only the most
relevant for macroscopic systems but also applies generally
to situations in which decoherence arises slowly though
a series of independent, mildly decohering interactions, a
situation of interest for decoherence avoidance or correc-
tion protocols.
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