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Effects of Synaptic Noise and Filtering on the Frequency Response of Spiking Neurons
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Noise can have a significant impact on the response dynamics of a nonlinear system. For neurons, the
primary source of noise comes from background synaptic input activity. If this is approximated as white
noise, the amplitude of the modulation of the firing rate in response to an input current oscillating at
frequency v decreases as 1�

p
v and lags the input by 45± in phase. However, if filtering due to realistic

synaptic dynamics is included, the firing rate is modulated by a finite amount even in the limit v ! `

and the phase lag is eliminated. Thus, through its effect on noise inputs, realistic synaptic dynamics can
ensure unlagged neuronal responses to high-frequency inputs.
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Neurons in cortical and other neural circuits receive a
continuous barrage of synaptic input that acts as a source
of noise and makes neuronal responses highly variable
(see, e.g., [1]). Noise inputs can also affect other neuronal
response characteristics [2–7]. Knight [6] and Gerstner
[7] have shown that noise can simplify the dynamics of
neuronal firing rates, and that, for some types of noise,
the firing rate of a neuron can replicate the time course of
an input current, no matter how rapidly it varies. This is
rather surprising because the membrane capacitance and
resistance of a neuron act as a low-pass filter on the input
current. While intriguing, these results are not based on
realistic models of the background synaptic input that a
neuron receives, but rely instead on simpler noise models.
Yet these analyses and the results reported below make it
clear that the response dynamics are sensitive to details of
the noise model. Here, using a combination of analytic
and computational techniques, we examine how synaptic
input modeled after that received by a cortical neuron in
vivo affects the response characteristics of a model neuron.

The integrate-and-fire model we use in this analysis
represents the electrical properties of the neuron by par-
allel resistor (R) and capacitor (C) elements [8]. The basic
equation determining the potential V across the cell mem-
brane is

tm
dV
dt

� Vrest 2 V 1 I ,

where tm is the time constant of the RC circuit, Vrest is
the equilibrium or resting potential in the absence of in-
put, and I represents the sum of all inputs to the neuron.
Action potentials are generated in the model whenever the
membrane potential reaches a threshold value, Vth. At this
point, the membrane potential is reset to a value Vreset.
In our analysis, the neural response is specified by a fir-
ing rate r�t�, which is the probability density for action
potentials to occur at time t. To probe the response dy-
namics of the integrate-and-fire model in the presence of
noise, we express the total current as the sum of input and
noise terms, I � Iin 1 Inoise, and consider the case of an
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oscillating input current, Iin � I0 1 I1 cos�vt�. Inoise rep-
resents the combined effect of large numbers of excitatory
and inhibitory synaptic inputs. Biological synapses modify
the conductances of their neuronal targets rather than sim-
ply injecting current. We have performed simulations that
include synaptic effects on conductance and find no ap-
preciable differences from the results reported here using
the more analytically tractable approximation of synaptic
currents.

We characterize the firing rate by its time average, r0,
and by the amplitude and phase of its Fourier transform
at the frequency v, r1�v�, and f�v�. This is equiva-
lent to approximating the firing rate as r�t� � r0 1

r1�v� cos�vt 1 f�v��. Provided that r1�v� # r0, the
firing rate is well fit by this expression, except near the
resonances that occur at low noise levels.

Knight [6] showed that, in the absence of noise, the
firing rates of integrate-and-fire neurons display resonances
when v�2p is an integer multiple of r0. These distort
the response of the system relative to the input. Knight
also computed the firing rate for a simplified noise model,
based on choosing a random threshold after each spike, and
showed that noise decreased the size of, or eliminated, the
resonant peaks. For some noise conditions, Knight found
that r1�v� was independent of frequency and f�v� � 0.
Gerstner [7] obtained related results in a more general
formulation.

The noise input we analyze is generated by action po-
tentials carried by thousands of afferent fibers, and it can
be modeled as a high-rate Poisson process. Because of
the high rate, this is well approximated by a Gaussian
white-noise source. Synapses transmit input action poten-
tials with a very rapid rise time but a slower exponential de-
cay with a time constant ts. This has the effect of low-pass
filtering the input noise. Thus, we write

ts
dInoise

dt
� h�t� 2 Inoise ,

where h�t� is a Gaussian white-noise random variable sat-
isfying �h�t�� � 0 and �h�t�h�t0�� � s2d�t 2 t0�tm. We
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use the parameter s, which is in mV units, to characterize
the amplitude of the noise.

When ts � 0 (white noise), the probability density for
the membrane potential of the neuron at time t, P�V , t�, is
described by the Fokker-Planck equation (see, e.g., [9]),

tm
≠P
≠t

�
s2

2
≠2P
≠V 2 1

≠

≠V
�V 2 Iin�t� 2 Vrest�P . (1)

The firing rate is proportional to the flux ≠P�V , t��≠V
when an absorbing boundary condition is imposed at the
firing threshold Vth,

r�t� � 2
s2

2tm

≠P�V , t�
≠V

Ç
V�Vth

,

with P�Vth, t� � 0. This flux is returned at the reset poten-
tial so, in the limit e ! 0, P�Vreset 2 e, t� � P�Vreset 1

e, t� and

≠P�V , t�
≠V

ÇV�Vreset1e

V�Vreset2e

� 2
2r�t�tm

s2 .

The time-independent solution of Eq. (1) for constant input
(I1 � 0) has been known for a long time (see, e.g., [10]).
More recently, methods were introduced in [11] that can
be used to determine the solution for an oscillating input,
Iin � I0 1 I1 cos�vt�, when I1�I0 is small. The result of
this calculation is

r1�v�eif�v� �
r0I1

s�1 1 ivtm�

3

√ ≠U
≠y � yt , v� 2

≠U
≠y � yr , v�

U� yt , v� 2 U� yr , v�

!
, (2)

where yt � �Vth 2 I0 2 Vrest��s, yr � �Vreset 2 I0 2

Vrest��s, and U is given in terms of combinations of
hypergeometric functions [12]

U� y, v� �
ey2

G��1 1 ivtm��2�
M

µ
1 2 ivtm

2
,

1
2

, 2y2

∂

1
2yey2

G�ivtm�2�
M

µ
1 2

ivtm

2
,

3
2

, 2y2

∂
.

(3)

Results of the analytic computation for ts � 0 are il-
lustrated in Fig. 1. These are exact only in the limit
I1�I0 ! 0. To explore larger I1�I0 we determined the
modulation amplitude and phase of the firing rate of an
integrate-and-fire neuron by computer simulation. The re-
sults, shown in Fig. 1, indicate that the analytic expression
holds to a high degree of accuracy over the entire range of
I1 for which the firing rate remains in the interval �0, 2r0�
(when the modulation becomes larger and the firing rate
becomes zero in a part of the cycle the dynamics of the
model change considerably).
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FIG. 1. Response amplitude and phase for ts � 0. Solid lines
indicate the analytical predictions [Eq. (2)] and symbols rep-
resent simulation results. Throughout we use tm � 20 ms,
Vth � 254 mV, Vreset � 260 mV, and Vrest � 274 mV. The
value of s is indicated in the legend of each panel. For the simu-
lations, Iin was adjusted so that r1 � r0 with the value of r0
given in the legend. This corresponds to an input regime where
I1�I0 is no longer small. Modulation amplitudes (left panels)
are reported as r1�v��r1�0.1�, i.e., normalized to the amplitude
for 0.1 Hz.

Several features are apparent from both the analytic and
simulation results for ts � 0. As found in [6], the am-
plitude of the response modulation for low-noise levels
(s � 1 mV; upper panels of Fig. 1) peaks at input fre-
quencies that are integer multiples of r0. The resonance
peaks become less pronounced as r0 decreases or s in-
creases and are absent at high-noise levels (s � 5 mV;
lower panels of Fig. 1). In all cases, the modulation am-
plitude r1�v� goes to zero as 1�

p
v for large v. Outside of

the resonance regions, there is a phase lag in the response
�f�v� , 0� that approaches 245± as v ! `. Thus, the
distortion in the response relative to the input caused by
the resonances can be eliminated if a sufficient amount
of unfiltered white noise (ts � 0) is added to the model.
However, white noise does not allow the firing rate to be
modulated at arbitrarily high input frequencies, and a phase
lag is always present in the high-frequency response.

The synaptic noise received by neurons in vivo is not
white because ts is in a range from a few to tens or even
hundreds of ms for biological synapses. When the white
noise is filtered, the analytic calculations are significantly
more complex [13,14]. It is no longer possible to find an
exact solution for the stationary probability density and
firing rate for constant input current. However, calcula-
tions can be done in the limit ts ø tm, and, in particular,
2187
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the first correction to the stationary firing rate, of orderp
ts�tm, can be computed in that limit [15]. Further-

more, the same small amplitude oscillation calculation re-
ported above can be performed in this limit for the case
Iin � I0 1 I1 cos�vt�.

With filtered noise (ts . 0), the firing rate is deter-
mined by a distribution P� y, z, t� that depends on y �
2188
�V 2 I0 2 Vrest��s and the additional synaptic current
variable

z �
r

ts

tm

µ
Inoise 1 I1 cos�vt� 1 Vrest 2 Vth

s

∂
.

This definition is chosen because it simplifies the boundary
conditions and assures that z has a finite variance in the
limit ts�tm ! 0. P� y, z, t� obeys the equation
ts
≠P
≠t

�
1
2

≠2P
≠z2 1

≠�zP�
≠z

1

r
ts

tm

Ω
� yt 2

I1

s
���cos�vt� 2 vts sin�vt�����

≠P
≠z

2 z
≠P
≠y

æ
1

ts

tm

≠� y 2 yt�P
≠y

.

The boundary condition on the line y � yt is n�z, t� �
zP� yt , z, t��ptstm for z . 0, and P� yt , z, t� � n�z, t� �
0 for z , 0, where n�z, t� corresponds to the probability
flux in the y direction at the voltage threshold. The condi-
tion that the flux has to be zero on the half line z , 0 is
related to the fact that when a neuron fires, the time deriva-
tive of the potential and hence z can only be positive. The
prescription of zero probability density on a half line is
the main factor that significantly complicates the analysis.
The firing rate at time t is

r�t� �
Z `

2`
dz n�z, t� .

On the line y � yr , we have z 1
p

ts�tm � yt 2 yr ��
�P� yr 1 e, z, t� 2 P� yr 2 e, z, t�� � zP� yt , z, t� for
z . 0, and P� yr 1 e, z, t� � P� yr 2 e, z, t� for z , 0.
We then write P � P0� y, z� 1 Re�P1� y, z, v�eivt�.
When I1�I0 ø 1, the Fokker-Planck equation can be
linearized around the stationary solution P0, r0. Solutions
to this equation to leading orders in

p
ts�tm can be found

in both the low- (v � 1�tm) and high- (v ¿ 1�ts)
frequency limits. In the high-frequency limit, we obtain

lim
v!`

P1� y, z, v� � 2
I1

s

r
ts

tm

≠P0

≠z
� y, z� ,

and

lim
v!`

r1�v�eif�v� �
I1

stm

Z `

2`
dz P0� yt , z� .

The stationary distribution at threshold, P0� yt , z�, can
be calculated along the lines of [13–15]. It is of orderp

ts�tm for small ts�tm, and

lim
v!`

r1�v�eif�v� �
Ar0I1

s

r
ts

tm
, (4)

where

A �
p

2

Ç
z

µ
1
2

∂Ç
2

1
p

2

X
n

N�
p

n�n�n21��2e2n�2

n!
	 1.3238 ,

where z is Riemann’s zeta function [12], and

N�
p

n� �
Ỳ
k�1

µ
1 1

r
n
k

∂
e22

p
n�
p

k2
p

k21�
µ

k 1 1
k

∂n�2

.

The analytic results show that filtering of the noise
by the synaptic dynamics dramatically changes the high-
frequency behavior of r1�v�. In contrast to the white-noise
case, r1�v� now approaches a finite limit as v ! `. Fur-
thermore, the high-frequency limit of f�v� is zero for any
positive ts. This means that the neuronal firing rate can
be modulated by an oscillating input up to arbitrarily high
frequencies without a phase lag when ts . 0.

Equation (4) indicates that the high-frequency limit of
the response increases with larger values ts, but the calcu-
lation is only valid for ts ø tm. To explore larger values
of ts�tm, we performed simulations of the integrate-
and-fire model with filtered white-noise input (Fig. 2).
The simulation results indicate that the high-frequency
modulation amplitude continues to rise as ts is increased
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FIG. 2. Response amplitude and phase for ts . 0, and s �
5 mV. Traces represent simulation results for the values of ts
indicated to the right of each trace in the left panels showing
r1�v��r1�0.1�. The ticks on the right of all four panels indicate
the high-frequency limit predicted by Eq. (4). For the phase
plots (right panels), the value of ts is the same as for the am-
plitude trace to the left with the corresponding thickness. For
the upper and lower panels r0 � 50 Hz and 10 Hz, respectively,
and in both cases r1 � r0. The thick curves correspond to the
simulation data in the lower two panels of Fig. 1.
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FIG. 3. Firing rate in response to a step in the input current.
Histograms show the firing rate r�t� of the model integrate-
and-fire neuron, with ts as indicated, to a step of input current
at 500 ms. Firing rates were computed by counting action po-
tentials in 1 ms bins.

until the high- and low-frequency modulation amplitudes
are roughly equal. The phase of the response also tends
to zero as ts is increased. If ts is increased still further,
so that 2pr0ts is of order 1 or greater, the resonances that
were removed by the high-noise condition when ts � 0,
return. This is due to the filtering of the white noise in
the frequency range corresponding to the average firing
rate. Note from Fig. 2 that a larger ts value is required
to achieve an approximately flat response amplitude for
smaller values of r0. The analytic results of Eq. (4) agree
fairly well with the highest frequency simulations. Similar
results were obtained in the low-noise case, that is, increas-
ing ts caused a progressive flattening of the response am-
plitude at high frequency. The resonance phenomenon is
still present in the low-noise results, no matter what value
of ts is used, and the analytic results of Eq. (4) are con-
siderably less accurate unless ts ø tm.

Our study interpolates between two previously investi-
gated limits. In the large ts limit, the input model be-
comes a “slow” noise model (i.e., the cutoff frequency of
the noise is of the same order of magnitude as the firing
rate of the neuron), and our results become comparable to
that of earlier slow noise models [6,7]. At the other ex-
treme, with “fast” white-noise input, our results are also
consistent with previous results using a different type of
fast noise, escape noise [7].

We have seen that synaptic dynamics can have a signifi-
cant impact on neuronal responses to current inputs with
high-frequency components. Increasing the synaptic time
constant of the noise inputs enhances the high-frequency
response. Figure 3 illustrates the effect this has on the
responses of an integrate-and-fire neuron to an instanta-
neous step in the input current. As ts is increased from 0
to 10 ms, the response of the neuron gets more and more
rapid and, for ts � 10 ms, it follows the input current al-
most instantaneously.

Analysis of neuronal response variability indicates that
the noise present in vivo roughly matches the higher of the
noise levels used in our analysis (s � 5 mV) [16]. Typi-
cal fast excitatory and inhibitory synapses (AMPA and
GABAA synapses) have time constants in the range of 2
to 5 ms (see, e.g., [17]), large enough to significantly af-
fect response dynamics. Interestingly, ts � 5 ms is at the
lower range of values for which an extremely rapid re-
sponse to a step of input current is obtained (Fig. 3). While
increasing ts to even larger values for noise inputs might
further enhance high-frequency responses, this would also
lead to stronger resonance phenomena. An interesting pos-
sibility in this regard is that signal changes are mainly due
to fast excitatory synapses of the AMPA type, while noise
is mainly implemented through slower GABA synapses.
Thus, the observed values of synaptic time constants may
be tuned to achieve both rapid and undistorted responses
to time-varying inputs.
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