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Elastically Driven Linker Aggregation between Two Semiflexible Polyelectrolytes
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The behavior of mobile linkers connecting two semiflexible charged polymers, such as polyvalent
counterions connecting DNA or F-actin chains, is studied theoretically. The chain bending rigidity in-
duces an effective repulsion between linkers at large distances while the interchain electrostatic repulsion
leads to an effective short-range interlinker attraction. We find a rounded phase transition from a dilute
linker gas where the chains form large loops between linkers to a dense disordered linker fluid connecting
parallel chains. The onset of chain pairing occurs within the rounded transition.
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Highly charged chains of the same sign can be linked
together by mobile polyvalent ions of the opposite sign
(polyvalent counterions). This phenomenon has been ob-
served for a wide variety of systems, including solutions of
DNA [1,2], F-actin [3–6], and polystyrene sulfonate [7].
For flexible chains, polyvalent counterions can induce col-
lapse of the chains into a globular compact structure [7];
alternatively, one can argue that the flexible chains mediate
attractions between polyvalent counterions that cause them
to aggregate. For rigid rods, on the other hand, the poly-
valent counterions always repel each other along the axis
of the rods, and the attraction between rods is attributed to
ion-ion correlations among rods [8,9].

In this paper, we study the intermediate case of semi-
flexible chains, appropriate to biologically important poly-
mers such as DNA. It has been shown theoretically that
counterion correlations can modify the bending rigidity of
a single semiflexible chain [10–12] and can even render
the chain unstable to collapse [11]. Here, we consider two
semiflexible chains from a different point of view: instead
of studying how counterions modify the effective interac-
tions between monomers on chains, we examine how chain
flexibility modifies the effective interaction between gen-
eralized linkers, which could be simple polyvalent coun-
terions [6] or weakly binding (cross-linking or bundling)
proteins [4]. Alternatively, the linkers could represent hy-
drogen bonds connecting the two strands of a DNA double
helix undergoing denaturation [13,14]. We use this effec-
tive interaction to study the many-body statistical mechan-
ics of linkers. A similar approach has been fruitful for
understanding behavior of proteins that link together elas-
tic membranes [15,16].

Our calculations yield three main results. First, we find
that the chain-mediated interactions between linkers are
nonmonotonic. At large linker separations the chain bend-
ing elasticity leads to a long-ranged repulsion, while at
short distances the electrostatic repulsion between chains
leads to a short-ranged attraction between linkers. Conse-
quently, there is a repulsive barrier in the interaction be-
tween two linkers at intermediate separations. Second, the
0031-9007�01�86(10)�2182(4)$15.00
unusual shape of the effective potential leads to interest-
ing phase behavior in the many-linker system. Since the
two-chain system is one dimensional, there is no true phase
transition [17]; instead, we find a rounded transition from
a dilute phase of linkers where the chains form large loops
to a dense one where the chains are parallel and close to-
gether. The rounded transition is accompanied by large
fluctuations in the spacing of linkers. This is reminiscent
of large fluctuations in the separation of membranes near
their binding�unbinding transition [18]. Third, we find that
the onset of aggregation of single chains into pairs occurs
within this rounded transition. Our results suggest that in
many-chain systems, the rounded transition might be found
near the onset of bundling.

Our model consists of two charged semiflexible chains
held together by a series of linkers (Fig. 1). Each chain
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FIG. 1. Schematic view of two chains connected by linkers at
(a) low linker densities (the dilute regime); (b) high densities
(the disordered “railway track” structure), and (c) intermediate
densities (the crossover regime). One chain is in the y � 0
plane, while the other is in the y � d plane.
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carries a negative linear charge density l � 2ej�lB,
where e is the electronic charge, lB � e2�´kBT is the
Bjerrum length, ´ is the solution dielectric constant, and
kBT is the thermal energy. Here, l and j are the effective
linear charge density and the corresponding, dimension-
less, Manning-Oosawa parameter [8,19], respectively. In
the presence of salt at concentration cb , the Debye-Hückel
screening length k21 � 1�

p
8plBcb characterizes the

exponential decay of electrostatic interactions. We assume
that a linker of size b constrains the two chains of radius
rs at a fixed separation d � 2rs 1 b.

The first step is to calculate the effective interaction be-
tween two linkers separated by a distance l. This energy
can be estimated by considering the total energy of a pe-
riodic array of linkers with separation distance l along the
x axis. For simplicity, we assume that each chain is re-
stricted to a plane parallel to the xz plane. One chain is lo-
cated in the y � 0 plane and follows the curve �x, y, z� �
�x, 0, z�x��, where z�6l�2� � 0 and z�0� � h�2. The sec-
ond chain is located in the y � d plane and follows the
curve �x, y, z� � �x, d, 2z�x��. A periodic trial function is
assumed for the two chains

z�x� �
h
2

cos�px�l� , (1)

where h is related to the cross-link angle u through
tan�u�2� � ph�2l and will be determined variationally.
It should be emphasized that although the exact shape of
the trial function affects the numerical values, it should
not have a qualitative effect on the results.

The electrostatic energy per linker is given by

Eel �
j2

lB

Z l�2

2l�2
dx �1 1 z2

x�1�2

3
Z `

`
dx0�1 1 z2

x0�1�2 e2kr12

r12
, (2)

where r2
12 � �x 2 x0�2 1 d2 1 �z�x� 1 z�x0��2 and zx �

dz�dx. In Eq. (2) and in the following discussion all en-
ergies are expressed in terms of the thermal energy kBT .
Note that if two straight chains cross at an angle u, the
electrostatic energy is [19]

Eel �
2pj2e2kd

klB sinu
�

G

sinu
(3)

favoring a crossing angle of u � 90± and providing a basic
energy scale in the problem.

This interaction competes with the bending energy [20]

Ebend � lp

Z l�2

2l�2
dx �1 1 z2

x �25�2z2
xx , (4)

which favors small crossing angles. The chain persistence
length lp characterizes the decay of correlations in the
chain orientation. Any dependence of bending rigidity on
the composition of the surrounding solution [10–12,21] is
implicit in lp .
The total free energy per linker f�l; h� � Eel 1 Ebend
can be calculated numerically and minimized with respect
to h [22]. Typical interaction energies Df�l� � f�l� 2

f�`�, as well as the behavior of the crossing angle u, are
depicted in Fig. 2. Note that f�l ! `� � G.

The competition between interchain electrostatic repul-
sion and intrachain bending rigidity leads to an effective
attraction between linkers at short separations and an ef-
fective repulsion between linkers at large separations. At
short separations, the bending energy dominates over the
electrostatic energy and the chains remain parallel to each
other (crossing angle u � 0). Since the chains are straight,
the bending energy does not otherwise affect the linker
interaction. Furthermore, the total electrostatic repulsion
between chains is fixed and does not depend on the posi-
tion of the linkers. As the density of linkers increases,
the energy per linker decreases. The effective interac-
tion can be estimated from the electrostatic energy of two
parallel chains [19]. It is attractive and depends linearly
on the linker separation: Dfshort 	 2G�l0 2 l��l0, where
kl0 � p�ekdK0�kd� and K0 is the zero-order modified
Bessel function. The origin of the attraction can also be
understood by considering only two linkers: by joining to
form a single junction instead of two separate junctions,
the electrostatic repulsion between the chains is reduced
by roughly the junction energy G. Thus, the interchain re-
pulsion leads to an effective interlinker attraction.

At very large interlinker separations, the electrostatic
repulsion dominates the bending energy and the crossing

FIG. 2. (a) Interaction free energy per cross-link Df�l� �
f�l� 2 G and (b) crossing angle u as functions of the reduced
distance kl between linkers. Note that Df�l� changes sign near
l0 (see text) and that u becomes nonzero at l� (denoted by an ar-
row for the solid curve). The curves correspond to different val-
ues of the chain persistence length lp � 10 Å (dots), lp � 50 Å
(long dashes), and lp � 200 Å (solid curve). We use d � 25 Å,
j � 4, k21 � 10 Å, and lB � 7 Å.
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angles saturate to u � 90±. Since the chains are perpen-
dicular at the junctions, the electrostatic repulsion does not
otherwise affect the interaction between linkers. Com-
pressing the linkers together costs bending energy, lead-
ing to a long-range repulsion of the form Dflong 	 alp�l,
where a is a constant of order unity. We estimate a 	
p�

p
2 by assuming constant curvature of the two chains

in between junctions and minimizing with respect to u.
The crossover between the two regimes occurs at a sepa-
ration l�, where jDflongj 	 jDfshortj. For lp & Gl0 (as
is the case for the parameters in Fig. 2) we obtain l� 	
l0 1 alp�G. For stiffer chains, we find l� 


p
alpl0�G.

The final interlinker potential we use is

y�l� � Df�l� 1 c ln�l�lp� , (5)

where the second term estimates the entropy loss of two
random walks of step size lp constrained to cross after
the same number of steps at a distance l from each other
[13]. We use c � 3�2 which corresponds to ideal chains
in three dimensions. A recent estimate which includes
excluded volume interactions between different parts of
the chains yields c 	 2.1 2.2 [14]. This term is relevant
only at large distances l ¿ lp . In addition, the linker size
b provides a lower cutoff on the interlinker separation l.
This corresponds to a hard-core repulsion or, in the case of
DNA denaturation, to the size of one base pair. Other direct
interactions between linkers such as the Coulomb repulsion
between polyvalent counterions can also be included [22]
but do not affect our main results.

With the effective linker interaction now in hand, we
can study a one-dimensional fluid of N interacting link-
ers located along a straight line of length L at 0 # x1 ,

x2 , · · · , xN # L. At low densities (large separations
between linkers) one might expect a crystal of linkers even
in this one-dimensional system because the effective repul-
sion decays as 1�l. However, in this regime, the crossing
angle is u � 90± and the chain configuration on one side of
the crossing junction is decoupled from the chain configu-
ration on the other side. As a result, the linker interaction
is only a nearest neighbor interaction; that is, the interac-
tion decays as 1�l, but only as far as the nearest linker.

For nearest neighbor interactions, one can calculate the
partition function directly from the interlinker potential
y�lj � xj11 2 xj�. Note that at higher densities, the
crossing angle becomes less than u � 90± and further-
neighbor interactions develop. Nevertheless, at those
shorter separations, the interaction no longer has the
form 1�l, so the further-neighbor interactions cannot
lead to new phase transitions, although they might affect
quantitative results. We therefore neglect further-neighbor
interactions at all densities.

It is convenient to use the Gibbs ensemble in which
the natural variables are the number of linkers N and the
one-dimensional pressure P [23]. In the thermodynamic
limit the Gibbs free energy is G � 2N lnZ1, where
2184
Z1 �
Z `

b

dl
lT

exp�2y�l� 2 Pl� (6)

and lT is the thermal wavelength. The chemical potential
is m � 2 lnZ1 and the linker density r � N�L can be
calculated from the average linker separation 1�r � l̄ �
2≠�lnZ1��≠P. The fluctuations in the separations Dl2 �
�l 2 l̄�2 can be similarly extracted.

The typical behavior we obtain is shown in Fig. 3, where
we plot the linker density r as a function of chemical po-
tential m (shifted by G 2 2´0, where ´0 is the adsorption
energy of a linker onto a chain). Note that adsorption ener-
gies and a constant G term are not included in the definition
of m. At low m the linker density is low and the chains
form large loops between the linkers (Fig. 1a). At high
r, on the other hand, the system resembles a disordered
railway track where the chains are rails and linkers are ties
(Fig. 1b).

Between these two limits, we find that at a certain value
of the chemical potential m� & 2G the linkers aggregate
together and the density jumps sharply. The slope at the
jump appears vertical because dr�dm is large. Within our
model, there is no true phase transition [17]. However, this
jump in r can be viewed as a rounded transition from a
dilute to a dense phase of linkers. In the vicinity of the
rounded transition there are large fluctuations in the inter-
linker separation, as shown in the inset in Fig. 3. These
fluctuations correspond to clusters of linkers that increase
in size as the system crosses through the rounded transi-
tion. The crossover regime is limited to a narrow region
around m� but spreads over a considerable range of den-
sities (0 & r & 0.2 in the figure). Finally, we find that

FIG. 3. One-dimensional linker density r as a function of the
chemical potential m and (inset) the relative fluctuation in the
interlinker separation Dl�l̄ as a function of r. The parameters
are the same as for the solid curve in Fig. 2 for which G 	 11.8;
also, b � 1 Å and lT � 1 Å.



VOLUME 86, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 5 MARCH 2001
as the density increases near the rounded transition, the
short-ranged attraction between linkers sets in and the free
energy drops rapidly. As a result, paired chains become fa-
vorable compared to isolated chains. Thus, the transition
from single chains to pairs occurs near the rounded tran-
sition (m 	 m�). The density r� at which chain pairing
occurs can be estimated using analytical approximations
for the different asymptotic regimes [22]. For the physi-
cal values used in Fig. 3 we find r� to be well within the
rounded transition.

Our simple model can also be applied to DNA melting
[13,14], if the hydrogen bonds are considered to be gener-
alized linkers. Existing models also show a sharp melting
transition. The advantage of our approach is that some
of the physical aspects of the chain interactions (namely,
electrostatics and bending rigidity) are taken into account
explicitly. On the other hand, the specific double helical
structure of double stranded DNA is not included in the
model. One straightforward generalization of the model
would be to include a sequence-dependent linking energy
reflecting the different number of hydrogen bonds connect-
ing adenine with thymine and cytosine with guanine.

It is difficult to generalize our approach from two chains
to many chains because many-body effects become im-
portant. Nevertheless, we expect our results to be re-
flected in the behavior of many-chain solutions. We note
that the railway track structure resembles a bundle where
the chains are parallel and the linker density is high [24].
Similarly, the dilute large-loop regime is reminiscent of
networks where the chains cross at large angles and the
linker density is low. Such structures have been observed
experimentally [4,6]. Finally, in the limit of isolated chains
the railway track is analogous to the compact torus formed
in highly dilute DNA solutions [1,2,25].
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