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Retarded Learning: Rigorous Results from Statistical Mechanics
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We study learning of probability distributions characterized by an unknown symmetry direction. Based
on an entropic performance measure and the variational method of statistical mechanics we develop exact
upper and lower bounds on the scaled critical number of examples below which learning of the direction
is impossible. The asymptotic tightness of the bounds suggests an asymptotically optimal method for
learning nonsmooth distributions.
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In recent years, methods of statistical physics have con-
tributed important insights into the theory of learning with
neural networks and other learning machines (see, e.g.,
[1–3]). Among the most prominent discoveries of sta-
tistical mechanics in this field is the occurrence of phase
transitions in the progress of learning, when the number
of presented example data is gradually increased and the
dimensionality of data and model parameter is large.

Besides the ubiquity of phase transitions in discrete
parameter models, they are typically observed when the
learning problem contains symmetries which are sponta-
neously broken when the scaled number of examples in-
creases beyond a critical value [1,4,5]. Although phase
transitions in neural networks have been analyzed exten-
sively by the method of replicas [6] it is usually hard to
present a rigorous analysis (for an exception see, e.g., [7]
and the recent attempts of Talagrand [8]). Hence, this of-
ten precludes a digestion of the interesting results by re-
searchers outside the community of statistical physicists
working on disordered systems. Unfortunately, also other
standard techniques based on asymptotic expansions [9]
will not apply in these cases. They are valid only when
the number of data is much larger than the number of
parameters.

In this Letter we will present a rigorous and simple ap-
proach to these problems. We combine information theo-
retic bounds for the performance of statistical estimators
(see, e.g., [10–12]) with an elementary variational prin-
ciple of statistical physics [13]. This will allow us to
compute rigorous upper and lower bounds for the critical
number of examples at which a transition occurs.

We will explain our method for the case of retarded un-
supervised learning which has been analyzed before using
the replica framework (see, e.g., [14–17]). The goal of
unsupervised learning is to find a nontrivial structure in
a set of data which reflects the properties of the under-
lying data generating mechanism rather than being an arti-
fact of statistical fluctuations. The phenomenon of retarded
learning describes the fact that for some high dimensional
probability distributions, it is impossible at all to predict
the underlying structure (usually a symmetry axis) if the
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(scaled) number of data is below a certain critical value.
Only above this value, estimation of the structure can start.

We adopt a probabilistic, Bayesian formulation of un-
supervised learning following [10,15,18]. We model a
situation where the probability distribution of the data is
characterized by a single unknown rotational-symmetry
direction w�. More specifically, we assume that a set of
t data xt � x1, . . . , xt , has been generated independently
by t samplings from a distribution of the form

P�xjw�� � P0�x� exp�2V �l�� , (1)

where P0�x� �
1

�2p�N�2 exp�2x2�2� is a spherical Gaussian
distribution and l �� w� ? x is the projection of the
N-dimensional data vector x on the direction defined by
w�. The distribution of the projection is given by p�l� �

1
p

2p
exp�2l2�2 2 V �l��. In the following, averaged

quantities with respect to p�l� will be denoted with an
overline �· · ·� �

R
dlp�l� �· · ·�. Based on the set of data

xt , the goal of a learner is to produce an estimate P̂t�xjxt�
for the true distribution P�xjw��. P̂t will not necessarily
belong to the given parametric class (1). Our approach
relies very much on the choice of a specific measure for
the quality of the estimation. Rather than computing the
overlap between an estimated direction and the true w�,
we choose a quantity which is directly measuring our abil-
ity to compress the data based on the information we have
gained on the structure of P. This is related to the aver-
aged relative entropy [Kullback Leibler (KL) divergence]
between the true distribution and the estimate

L�P̂t , w�� ��
Z

dxtP�xtjw��
Z

dxP�xjw�� ln
P�xjw��
P̂t�xjxt�

,

(2)

where P�xtjw�� is shorthand for the product distributionQt
i�1 P�xijw�� and dxt �

Qt
i�1 dxi . We will further

adopt a Bayesian approach where we assume that “nature”
draws the true parameter w� at random from a (noninfor-
mative) prior distribution p�w�� and associate measure
dm�w�� � p�w��dw� given by the uniform distribution
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on the sphere with radius kw�k2 � 1. The case of a dis-
crete prior will be discussed later.

The progress of the learning will be measured by the
cumulative risk defined by

Rm�P̂� �
m21X
t�0

Z
dm�w��L�P̂t , w�� . (3)

This measure of loss has a variety of important applica-
tions in information theory, game theory, and mathematical
finance (see, e.g., [10,19]). For example, it is proportional
to the expected extra number of bits (assuming a reason-
able quantization of the xi) we have to suffer in compress-
ing the observed data when their distribution is unknown
and a sequential estimate is used instead [19]. As we will
see in a moment it has also an important meaning in sta-
tistical physics.

A first attempt to study retarded learning by using
bounds on (3) was undertaken by [12]. However, the
bounds were too weak to give a nonzero bound on the
critical number of examples below which learning is
impossible.

An elementary calculation shows that the posterior

probability P̂
Bayes
t �xjxt� �

R
dm�w�P�xt jw�P�xjw�R

dm�w 0�P�xt jw 0� achieves

the minimum risk RBayes
m � Rm�P̂Bayes� over all choices

of estimators. Inserting this estimator into (3) and using
(1) we get
RBayes
m �

Z
dm�w��

Z
dxmP�xmjw��

3

∑
2 ln

Z
dm�w�e2

P
i
�V �w?xi�2V �w�?xi ��

∏
. (4)

The last line looks very much like an averaged free en-
ergy in statistical mechanics for a system with Hamilton-
ian

P
i�V �w ? xi� 2 V �w� ? xi��. Hence we can expect

that useful bounds for this quantity can be derived using
the standard variational principle of statistical mechanics
[13] for the free energy

2 ln
Z

dm�w�e2H�w� # 2ln
Z

dm�w�e2H0�w�

1 �H 2 H0	0 (5)

which bounds the free energy of a system with Hamilton-
ian H in terms of the free energy of a trial Hamilton-
ian H0 plus a correction term. The brackets ��· · ·�	0 �R

dm�w�e2H0�w��· · ·��
R

dm�w 0�e2H0�w 0� denote an average
with respect to the Gibbs distribution defined by H0. Using
appropriate choices for H and H0, we will get both upper
and lower bounds on (4).

We begin with the lower bound. We set H0 �P
i�V �w ? xi� 2 V �w� ? xi�� and H �

P
i�lV �w ? xi� 2

gV �w� ? xi�� where l, g . 0 are variational parameters.
Averaging both sides of (5) over P�xmjw�� and p�w��
using Jensen’s inequality in the second line, we derive the
lower bound on RBayes

m

RBayes
m $

Z
dm�w�� dxmP�xmjw��

∑
2 ln

Z
dm�w�e2H

∏
1 m�g 2 l�V

$ 2
Z

dm�w�� ln
Z

dm�w�
∑Z

dxP0�x�
e2lV �x?w�

e�12g�V �x?w��

∏m

1 m�g 2 l�V

� 2 ln

ΩZ 1

21
dqWN �q� �Flg�q��m

æ
1 m�g 2 l�V , (6)
where WN �q� �
R

dm�w�d�q 2 w .w�� ~ �1 2 q2��N23��2

and

Flg�q� �
Z

Dx
Z

Dye2lV �x�2�12g�V �xq1y
p

12q2 �,

with the Gaussian measure Dx � e2�1�2�x2
dx�

p
2p. This

bound holds for every N and every m.
To show the phenomenon of retarded learning we will

compare the cumulative risk of the Bayes estimator to the
risk of a trivial estimator which assumes that there is no
specific structure in the data and always predicts with the
spherical distribution P̂triv

t �x� � P0�x� thereby achieving
the trivial total risk Rtriv

m � Rm�P̂triv� � 2mV . Note, that
V is a nonpositive quantity. We are interested in the dif-
ference DRm � Rtriv

m 2 RBayes
m between the trivial risk and

the Bayes risk. Taking the thermodynamic limit N ! `

with a � m�N fixed, we can evaluate the integral in (6) by
Laplace’s method which gives the asymptotic upper bound
for DRm
lim sup
N!`

DRaN�N # min
q

Ω
1
2

ln�1 2 q2� 1 a lnFgl�q�
æ

1 a�l 2 g 2 1�V . (7)

For sufficiently small a, the bound (7) is optimized for
g � 0 and l � 1. For any potential V having the property
l � 0 (i.e., when the problem is not trivially learnable by
computing the mean of the data) there is a critical value
alb � �1 2 l2�22 such that as long as a # alb the mini-
mizer is q � 0 and limN!`DRaN�N # 0 (see Fig. 1).
Since the Bayes risk is minimal, we have DRm $ 0 and we
conclude that limN!`DRaN�N � 0 at least for a # alb .
This proves the existence of a region of retarded learning,
where even the risk of the optimal Bayes estimator is to
leading order in N as large as the risk of a trivial estimator,
which assumes that there is no spatial structure at all. The
bound alb agrees with the critical a obtained in the replica
analysis of [15].
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We next derive a lower bound on DRm. Using the fact that RBayes
m is the minimum cumulative risk over any choice of

estimators, for any distribution Q�xjw� and estimator Q̂�xjxt� �

R
dm�w�Q�xt jw�Q�xjw�R

dm�w 0�Q�xt jw 0� we have RBayes
m # Rm�Q̂�. Setting

H � 2 ln Q�xmjw�
P�xm jw�� in (5) and restricting ourselves to the class of trial Hamiltonians H0 which do not depend on xm, it

can be shown that the optimal choice is the data average H0 �
R

dxmP�xmjw��H, for which, on average, the correction
term in (5) vanishes. This yields

RBayes
m # Rm�Q̂�

� 2
Z

dm�w�� dxmP�xmjw�� ln

R
dm�w�Q�xmjw�

P�xmjw��

# 2
Z

dm�w�� ln
Z

dm�w� exp

∑
2m

Z
dxP�xjw�� ln

Q�xjw�
P�xjw��

∏
. (8)

We now have to find a good choice for Q�xjw�. For Q�xjw� with a structure of the form (1), we set Q�xjw� �
P0�x� exp�2U�w ? x��. In the thermodynamic limit we get the lower bound for DRm

lim inf
N!`

DRaN�N $ max
q

Ω
1
2

ln�1 2 q2� 2 a
Z

Dx exp�2Uq�x��U�x�
æ

(9)
with

Uq�x� � 2 ln
Z

Dy exp�2V �xq 1 y
q

1 2 q2 �� . (10)

It is easy to see that for any q, the expression in the curly
brackets of (9) is maximized for U�x� � Uq�x�. With this
choice for U, we find that there exists an aub such that for
a . aub , we have limN!` DRaN�N . 0 which means
that now the performance of the Bayes risk is better than
the trivial risk and a nontrivial estimation of the direction
w� is possible (see Fig. 1). aub gives an upper bound on
the region of retarded learning but has no simple analytical
expression.

Our approach is also easily applied to a discrete prior
distribution, e.g., a uniform distribution on the hypercube
[20]. Again, for small a we find a region of retarded

0 5 10 15 20 25 30 35 40
m/N

−1

0

1

2

3

R
   

/N

Upper bound
Lower bound
simulations 

α

ub
α

lb

m
∆

FIG. 1. Upper and lower bound for the Bayes Risk DRm�N �
�RBayes

m 2 Rtrivial
m ��N in the limit N ! ` for the Gaussian case

A � 20.5. alb � 4. Simulations are for the plug-in estimator
and show �Rm�Ptriv� 2 Rm�P̂p���N for N � 100 averaged over
50 data sets.
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learning DRBayes
m �N � 0 at least for a # alb where alb

is exactly the same as for the spherical prior.
For illustration, we apply the bounds to the simple

case of a Gaussian distribution for which the integrals
can be done analytically. Other distributions will be dis-
cussed in [21]. We set P�xjw�� � 1

�2p�N�2�11A� exp�2x2

2 1
A

2�11A� �x ? w��2� . The data are normally distributed with
unit variance in all directions perpendicular to w� and with
variance 1 1 A in the direction w�. The upper and lower
bounds (7) and (9) (optimized with respect to l and g)
are shown in Fig. 1 for A � 20.5 for which we obtain
alb � 1�A2 � 4. We have compared the bounds with nu-
merical simulations. Since it is hard to compute the Bayes
optimal estimation algorithmically, we have used the fol-
lowing (suboptimal) algorithm instead. We have computed
the direction ŵ�xt� for w� which maximizes the posterior
probability of the data. The estimate of the distribution
is given by the plug-in estimator P̂

p
t �xjxt� �� P���xjŵ�xt����

which has the KL divergenceZ
dxP�xjw�� ln

P�xjw��
P̂

p
t �xjxt�

�
A2

1 1 A
�1 2 �w� ? ŵ�xt��2� ,

and the cumulative entropic risk Rm�P̂p� can be easily ap-
proximated numerically by averaging over a large number
of data sets. Figure 1 shows the difference Rm�Ptriv� 2

Rm�P̂p�. Since the Bayes risk is minimal, the upper bound
on DRm is also an upper bound on every estimator while
the lower bound is only a lower bound on the Bayes risk.
We see that until a 
 4, DRm is negative and decreases
linearly. Since the slope of the dash-dotted curve is pro-
portional to the (relative) instantaneous loss (i.e., the non-
cumulative risk), the plug-in estimator is in the retarded
learning regime; its instantaneous loss is even bigger than
that of the trivial estimator.
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This is due to the fact that the plug-in estimator has to
keep the elliptic form of the distribution P�xjw� which is
always different from spherical when ŵ�xt� fi 0. Between
a $ 4 and a # 7.5, the performance of the plug-in esti-
mator improves, the slope increases but is still negative.
For a . 7.5, the performance of the plug-in estimator is
better than the trivial one and the curve starts to increase.
The Bayes estimator does not have this kind of disadvan-
tage and can take a form closer to the spherical distribution
in the retarded learning region by smoothing over the pa-
rameters w�.

Both bounds in Fig. 1 show the same type of asymptotic
growth for a ! `. The asymptotics can be found analyti-
cally by expanding both bounds (7) and (9) for q ! 1. For
a smooth potential V both bounds give asymptotically the
same logarithmic growth RBayes

m �N � 1�2 lna which can
also be obtained by well known asymptotic expansions
involving the Fisher information matrix [11,22,23]. On
the other hand, our bounds can also be used when these
standard asymptotic expansions do not apply, e.g., when
the potential exhibits a discontinuity [15] of the form
V �l� � 2 ln2Q�l� 1 U�l� with corresponding projec-
tion distribution p�l� � Q�l� 2

p
2p

exp�2l2�2 2 U�l��
where Q�l� is the Heaviside function and U is smooth,
Our bounds yield the asymptotic scaling RBayes

m �N � lna.
The asymptotic matching of our bounds has an im-

portant consequence for computing asymptotically good
approximations to Bayesian predictions. Such approxi-
mations are easily derived for smooth potentials by
local expansions of the posterior distribution around its
maximum (Ref. [24]). However, this technique will obvi-
ously fail for nonsmooth potentials. On the other hand,
our results show that the estimate Q̂ in (8) which uses
the smooth optimizing potential Uq (10), has the same
asymptotic performance as the Bayes optimal estimate
RBayes

m . The smoothness of Uq will again enable local
expansions. For example, following (10), the case V �l� �
2 ln2Q�l� can be well estimated using Uq�l� �
2 ln2H�2ql�

p
1 2 q2 � with H�x� �

R
`
x Dx and where

the maximizer q of the right hand side of (9) is a function
of a.

In this Letter, we have put the phenomenon of retarded
learning first established by the replica method on a rigor-
ous footing. Our method relies on a general information
theoretic performance measure for learning probability
distributions which is related to the free energy of statisti-
cal physics. A variational principle yields a controlled ap-
proximation to this quantity by providing exact upper and
lower bounds which are valid for arbitrary dimensionality
of the problem. We expect that this framework is flexible
enough to be applicable to more complex and realistic
probabilistic models. It may also be useful for construct-
ing criteria that help to decide if structures estimated
from a dataset in a high dimensional space reflect a real
feature of the underlying data generating mechanism or
if the result is expected to be a spurious effect of random
fluctuations.
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