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Finite-Size Scaling for the Ising Model on the Möbius Strip and the Klein Bottle
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We study the finite-size scaling properties of the Ising model on the Möbius strip and the Klein bottle.
The results are compared with those of the Ising model under different boundary conditions, that is,
the free, cylindrical, and toroidal boundary conditions. The difference in the magnetization distribution
function p�m� for various boundary conditions is discussed in terms of the number of the percolating
clusters and the cluster size. We also find interesting aspect-ratio dependence of the value of the Binder
parameter at T � Tc for various boundary conditions. We discuss the relation to the finite-size correction
calculations for the dimer statistics.
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The systems under various boundary conditions have the
same per-site free energy in the bulk limit, whereas the
finite-size corrections are different. The idea of finite-size
scaling (FSS) [1,2] is very important in understanding
finite-size effects near the criticality. It is known that the
FSS functions depend on the boundary conditions. The
difference in the FSS functions for the Ising model under
the periodic and free boundary conditions has been dis-
cussed in connection with the universal FSS for the perco-
lation problem [3] and the Ising model [4]. The systems
with the tilted boundary conditions were also studied [5,6].
Quite recently, Lu and Wu [7] studied dimer statistics on
the Möbius strip and the Klein bottle. These two systems
are other examples of interesting boundary conditions, and
their topological property is unique. The dimer statis-
tics on the Möbius strip was also studied by Brankov and
Priezzhev [8]. The ground-state entropy of the Potts anti-
ferromagnet on the Möbius strip was investigated [9]. In
two dimensions the relevance of the finite-size properties
to the conformal field theory is another source of interest
[10–12].

In this Letter we study the FSS functions for the two-
dimensional (2D) Ising model on the Möbius strip and the
Klein bottle in view of increasing interest in the effect of
boundary conditions for finite systems. We compare these
results with those of the Ising model under different bound-
ary conditions, that is, the free, cylindrical, and toroidal
boundary conditions. A total of five boundary conditions
are considered, and they are illustrated in Fig. 1. We deal
with the rectangular lattice of size L1 3 L2 with the aspect
ratio a � L1�L2. Thick and thin lines denote periodic and
free boundaries, respectively, in Fig. 1. We impose the pe-
riodic boundary conditions in both the horizontal and ver-
tical directions for the torus (toroidal boundary condition).
The twisted periodic boundary condition is imposed in the
y direction, that is,

f�x, y 1 L2� � f�L1 2 x, y� , (1)

for the Klein bottle. The periodic boundary condition is
imposed in one direction and the free one in the other di-
rection for the cylinder (cylindrical boundary condition);
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the twisted periodic and the free boundary conditions are
imposed for the Möbius strip. We refer to our system as
a plane when we impose the free boundary conditions in
both directions. The Möbius strip and the Klein bottle have
a unique topological property; they have a nonorientable
surface. The topological properties of five boundary con-
ditions, the number of sides and the number of edges, are
tabulated in Table I. The symmetry property under a trans-
formation a ! 1�a is also given in Table I. The system is
symmetric under such a transformation for the plane and
the torus.

We use the Monte Carlo simulation to study the FSS
properties of the 2D Ising model with various boundary
conditions near the criticality. The moments of magneti-
zation are basic quantities for the FSS analysis. Here we
focus on the Binder parameter [13], which is defined by

g �
1
2

µ
3 2

�m4�
�m2�2

∂
. (2)

One may determine the critical point from the crossing
point of g for different sizes as far as the corrections to FSS
are negligible. The value of the Binder parameter at the
critical point is not a universal quantity, and it depends on
the shape of the finite systems and the boundary conditions.

We plot the temperature dependence of the Binder
parameter g for several lattices with different boundary
conditions in Fig. 2. The system sizes are given within the
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FIG. 1. Illustration of the rectangular lattice with various
boundary conditions; plane, cylinder, torus, Möbius strip, and
Klein bottle. Thick and thin lines denote periodic and free
boundaries, respectively.
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TABLE I. The topological properties of the rectangular lattices
with various geometries (boundary conditions); the number of
sides and the number of edges are given. The symmetry property
under the transformation a ! 1�a is also given.

Geometry No. of sides No. of edges a ! 1�a

Klein bottle 1 0 no
Möbius strip 1 1 no
Torus 2 0 yes
Cylinder 2 2 no
Plane 2 1 yes

figure, and the aspect ratio of the lattice is chosen as a � 4.
The data of different sizes collapse on a single curve when
using the scaling variable �T 2 Tc�L1�n for the horizontal
axis. Here, L � �L1 3 L2�1�2, Tc � 2.269 . . ., and
n � 1 for the 2D Ising model; we plot the data in units
of the coupling J . We obtain very good FSS behavior for
g, and also find the strong dependence on the boundary
conditions. The g values of the Klein bottle are larger
than those of the torus. The same behavior is found in the
g values of the Möbius strip and those of the cylinder.

In order to clarify the difference in the Binder parameter
g, we study the magnetization distribution function p�m�
at T � Tc. We show the FSS plots of p�m� for various
sizes with different boundary conditions in Fig. 3. We plot
p�m�L2b�n as a function of mLb�n ; b � 1�8 for the 2D
Ising model. We again have good FSS behavior for p�m�
at T � Tc. The FSS function of p�m� strongly depends
on the boundary conditions. There are two sharp peaks
in p�m� for the Klein bottle and Möbius strip, and the
secondary broad peak at about m � 0 becomes larger for
the torus and cylinder. There is one peak about m � 0 for
the plane.
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FIG. 2. Plot of g as a function of �T 2 Tc�L1�n for the Ising
model with various boundary conditions, where Tc � 2.269 . . .
and n � 1. The data are plotted in units of the coupling J.
Here, K, M, T, C, and P represent Klein bottle, Möbius strip,
torus, cylinder, and plane, respectively. The aspect ratio a is
chosen as 4.
We may understand this behavior from the number of
percolating clusters and the size of clusters [14]. For the
systems with large aspect ratio, the importance of the num-
ber of percolating clusters was pointed out by Hu and Lin
[15]. The probability for the appearance of n percolat-
ing clusters for anisotropic lattices is of current interest
[16,17]. It was revealed by Tomita et al. [14] that for the
Ising model the combination of the percolating clusters
with up spins and those with down spins gives the con-
tribution to the broad peak at about m � 0 in p�m�. It
is interesting to relate the effect of the boundary condi-
tions to the number of percolating clusters and the size
of clusters. The periodic boundary conditions may have
the tendency that the size of the percolating clusters be-
comes larger compared to the free boundary conditions;
the order will be reduced near a free surface. Moreover, if
one twists the boundaries, more clusters mix together. To
confirm this speculation, we study the percolating proper-
ties of the Ising model with different boundary conditions.
Using the fact that the Ising model is mapped to the perco-
lation problem with the bond concentration of 1 2 e22J�T

[18,19], we can assign clusters. We can then decompose
the physical quantities by the number of percolating clus-
ters [14]. In Fig. 4 we plot the fraction of lattice sites in
the n percolating clusters �c�n at T � Tc for the system
of size 160 3 40. We find from the figure that the clus-
ter sizes become smaller for the system with free bondary
conditions, and the single cluster is actually more domi-
nant for the Klein bottle and the Möbius strip. Thus, we
explain the large g values of the Möbius strip and the Klein
bottle in relation to the number of percolating clusters.

The FSS functions for the Binder parameter g and the
distribution function p�m� depend on both the aspect ra-
tio and the boundary condition. We plot the aspect-ratio
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FIG. 3. Plot of p�m�L2b�n at T � Tc as a function of mLb�n

for the Ising model with various boundary conditions, where
b�n � 1�8. Here, K, M, T, C, and P represent Klein bottle,
Möbius strip, torus, cylinder, and plane, respectively. The aspect
ratio a is chosen as 4.
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FIG. 4. Plot of �c�n at T � Tc as a function of n for the Ising
model with various boundary conditions, that is, Klein bottle,
Möbius strip, torus, cylinder, and plane. The system size is
160 3 40 �a � 4�.

dependence of g at T � Tc, gc, for various boundary con-
ditions in Fig. 5. We use the logarithmic scales for the
horizontal axis. We have several interesting observations
from Fig. 5. The plot of gc as a function of a in loga-
rithmic scale is symmetric for the torus and the plane be-
cause of the symmetric property under the transformation
a ! 1�a; gc takes the maximum at a � 1. This is not the
case for other geometries. For large enough a �¿1�, the
FSS properties of the Klein bottle and those of the Möbius
strip become the same because the boundaries along the
shorter direction determine the FSS properties of the sys-
tem; for both the Möbius strip and the Klein bottle, the
boundary condition along the y axis is the twisted peri-
odic one. The FSS properties of the torus and the cylinder
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FIG. 5. Aspect-ratio dependence of the Binder parameter at
T � Tc, gc, for the Ising model with various boundary con-
ditions, that is, Klein bottle, Möbius strip, torus, cylinder, and
plane.
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are the same for large enough a. In contrast, the systems
with a # 1, the Klein bottle and the torus show similar
FSS behavior. It is because the twisted periodic bound-
ary or simple periodic boundary is not important for the
number of percolating clusters for a # 1. It is the same
situation for the Möbius strip and the cylinder for a # 1.
For small enough a �ø1�, the Möbius strip, the cylinder,
and the plane show the same FSS properties because the
boundaries along the shorter directions for these three are
the same, that is, the free boundary condition.

Let us compare our results with those of the dimer statis-
tics by Lu and Wu [7], who have calculated the finite-size
corrections for the dimer generating function. The finite-
size correction coefficients have been tabulated in Table 1
of Ref. [7]. Their notation M 3 N for the system size cor-
responds to our L1 3 L2. In the limit of large M in their
notation, which corresponds to a ¿ 1, the finite-size cor-
rection coefficients �c2, D2� are classified into three groups,
that is, Möbius strip and Klein bottle, cylinder and torus,
and plane. In contrast, for large N in their notation, a ø 1,
the finite-size correction coefficients �c1, D1� are classified
into two groups; one group is Klein bottle and torus, and
the other is Möbius strip, cylinder, and plane. For both
cases their results of the dimer statistics are consistent with
the present results. In addition, for large M � N , which
corresponds to a � 1, the correction coefficients �c1, c2�
are relevant; then Klein bottle and torus, Möbius strip and
cylinder, and plane form three groups. This result is again
consistent with the present one. These observations are
compatible with the conformal field theory [10–12] that
the behavior of the difference in finite-size corrections for
different boundary conditions is model independent.

To summarize, we have studied the FSS properties of
the Ising model with various boundary conditions, that is,
Klein bottle, Möbius strip, torus, cylinder, and plane. We
have elucidated the difference in the magnetization distri-
bution function p�m� for various boundary conditions in
terms of the number of the percolating clusters and the
cluster size. We have found an interesting aspect-ratio
dependence of the g value at T � Tc for various bound-
ary conditions. The FSS properties of the systems are
classified into three groups for a ¿ 1 and two groups for
a ø 1. For large a, the g value becomes large for the
Möbius strip and the Klein bottle, which is characteristic
for systems with a nonorientable surface.

There may be several directions for future study. In
the dimer statistics, two identities relating dimer gener-
ating functions for Möbius strips and cylinders have been
established [7]. It is desirable to explore the exact rela-
tions between the Binder parameters of the Ising systems
with different boundary conditions. Anyons on the cylin-
der and the torus have been studied with the braid-group
analysis [20]; the topology of the systems is important in
the fractional quantum Hall effect. Anyons on the Möbius
strip and the Klein bottle will be interesting subjects to
study. The boundary condition dependence of the critical
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behavior of the Anderson transition was investigated [21].
It is also interesting to study the scaling functions for
the Anderson transition with the Möbius and Klein-bottle
boundary conditions.

Several systems on the Möbius strip and the Klein bottle
have been studied in various fields of physics. Persistent
currents in a Möbius ladder were studied [22], and interest-
ing finite-size effects discussed. A general construction of
correlation functions in rational conformal field theory on
the Möbius strip and the Klein bottle was made in terms of
three-dimensional topological quantum field theory [23].
Moreover, the matrix string theory was constructed on the
Möbius strip and the Klein bottle [24]. This work on the in-
terplay of the topology and aspect ratio in the FSS proper-
ties of the Ising model may accelerate the study of physics
on a nonorientable surface.

After we submitted our paper, we found the preprint by
Lu and Wu [25]. They studied the partition function of the
Ising model on the Möbius strip and the Klein bottle ana-
lytically. They obtained essentially the same conclusion as
that of the dimer statistics [7]. We made the detailed study
of the boundary-condition dependence of the magnetiza-
tion distribution function p�m�, which is complementary
to the analytical work on the partition function.
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