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Signatures of Spin Pairing in Chaotic Quantum Dots
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Coulomb blockade resonances are measured in a GaAs quantum dot in which both shape deformations
and interactions are small. The parametric evolution of the Coulomb blockade peaks shows a pronounced
pair correlation in both position and amplitude, which is interpreted as spin pairing. As a consequence,
the nearest-neighbor distribution of peak spacings can be well approximated by a modified bimodal
Wigner surmise, in which interactions are taken into account beyond the constant interaction model.
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Recently, the Coulomb blockade (CB) of elec-
tronic transport through quantum dots, defined in
two-dimensional electron gases in semiconductor het-
erostructures, has been of considerable interest [1]. One
reason is that such dots are model systems to investigate
the interplay between chaos and electron-electron (e-e)
interactions. Here, a key feature is the distribution of
nearest-neighbor Coulomb blockade peak spacings (NNS),
which random matrix theory [2] (RMT) predicts to follow
a bimodal Wigner surmise P�s� for a noninteracting
quantum dot of chaotic shape, i.e.,

P�s� �
1
2

�d�s� 1 Pb�s�� . (1)

Pb�s� is the Wigner surmise for the corresponding Gauss-
ian ensemble; i.e., b � 1 for systems with time inversion
symmetry (Gaussian orthogonal ensemble— GOE), and
b � 2 when time inversion symmetry is broken (Gauss-
ian unitary ensemble— GUE). The peak spacing s is mea-
sured in units of the average spin-degenerate energy level
spacing D � 2p h̄2�m�A, where m� denotes the effective
mass, and A the dot area. The d function in P�s� takes the
spin degeneracy into account. RMT further predicts the
standard deviation for P�s� to be s � 0.62 for b � 1 and
s � 0.58 for b � 2, respectively [3].

The comparison to experimental data is made by ap-
plying the constant-interaction model [4,5], which allows
one to separate the constant single-electron charging en-
ergy EC from the fluctuating energies of the levels inside
the dot. In disagreement with the predictions of RMT, the
experimentally obtained NNS distributions are usually best
described by a single Gaussian with enhanced values of s

[6–9]. The data thus look as if spin pairing were absent,
although in Ref. [10], a spin pair has been observed in a
chaotic dot. It should be noted that spin pairing has been
clearly observed in quantum dots with a small number N
of electrons (N & 40). The addition spectrum of such dots
can be well explained with the energy spectrum of some
model potential [11]. For larger N , such models fail and
the dots are expected to be described by statistical models,
such as RMT.
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The apparent absence of spin pairing in quantum dots
in the statistical regime and the different shape of P�s�
have triggered tremendous recent theoretical work. One
possible explanation is the additional e-e interaction in-
side the dot [6,12–18], which lead to “scrambling” of the
energy spectrum [10,19] and can be characterized by the
interaction parameter rs, defined as the ratio between
the Coulomb interaction of two electrons at their average
spatial separation and the Fermi energy [12,16–18]. It is
theoretically expected that the NNS distribution becomes
Gaussian due to e-e interactions [14] and that s increases
for rs $ 2 [16,17]. However, all experiments so far have
been carried out in a regime where an increase in s is not
expected, i.e., in samples with 0.93 # rs # 1.35 [6–8],
with the exception of Ref. [9], where rs � 2.1.

Gate-voltage induced shape deformations of the dot
can modify the NNS distribution as well. The deformation
can be described by a parameter x, which corresponds to
the distance between avoided crossings induced by the de-
formation, measured in units of the CB peak spacing. For
x � 1, the NNS distribution of partly uncorrelated energy
spectra is measured, resulting again in a Gaussian shape
with enhanced s [20,21]. Whether shape deformations or
interactions dominate the shape of the NNS distribution
is not clear, although there is experimental evidence that
x , 1 and interactions are more important [9,10].

Here, we report measurements on a quantum dot in
which both shape deformations and rs are reduced. We
observe a pronounced pair correlation of both position and
amplitude of the Coulomb blockade resonances, which is
sometimes interrupted by kinks in the parametric evolu-
tion. The pairing is interpreted as a spin signature: the
energies of two states belonging to the same spatial wave
function with opposite spin differ by an average interaction
energy j̄, which fluctuates with a standard deviation of sj .
The measured NNS distribution is fitted to a modified bi-
modal Wigner surmise, with j̄ and sj as fit parameters.

The sample is a Ga[Al]As heterostructure with a two-
dimensional electron gas (2DEG) 34 nm below the sur-
face. The quantum dot is defined by local oxidation with
an atomic force microscope [inset in Fig. 1(a)] [22]. The
© 2001 The American Physical Society
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FIG. 1. (a) Right inset: AFM picture (taken before evaporation
of the top gate) of the oxide lines (bright) that define the dot,
coupled to source (S) and drain (D) via tunnel barriers, which
can be adjusted with the planar gates PC1 and PC2. Gates I
and II are used to tune the dot. Main figure: conductance G as
a function of VI , showing Coulomb blockade resonances. Left
inset: fit (line) to one measured CB peak (open circles); see text.
(b) Linear fit (line) of a typical peak spacing DVI as a function
of VI (dots) for a large range of VI . The average peak spacing
is almost constant, indicating small shape deformations.

lithographic dot area is 280 nm 3 280 nm. The dot can
be tuned by voltages applied to a homogeneous top gate
and to the planar gates I and II. In order to reduce rs as
much as possible, we chose a heterostructure with a high
electron density, further increased by a top gate voltage
of 1100 mV to ne � 5.9 3 1015 m22. This results in
rs � 0.72, which is smaller than in all previous experi-
ments; additional screening is provided by the top gate
[23]. The sample was mounted in the mixing chamber of
a 3He�4He-dilution refrigerator with a base temperature of
90 mK. The mobility of the cooled 2DEG was 93 m2�V s.
A DC bias voltage of 10 mV was applied across the dot,
and the current is measured with a resolution of 500 fA.
From capacitance measurements [5], we find an elec-
tronic dot area of 190 nm 3 190 nm, EC � 1.25 meV,
and D � 200 meV.

The measurements have been carried out in the weak
coupling regime, h̄G ø kBT ø D. Here, G denotes the
coupling of the dot to source and drain. The conductance
G was measured as a function of the voltage VI applied to
the planar gate I [see inset in Fig. 1(a)]. Magnetic fields
B applied perpendicular to the sample surface and VII

were used as parameters. The observed CB oscillations
[Fig. 1(a)] are fitted to a thermally broadened line shape,
i.e., G�VI � � Gmax cosh22�h�VI 2 Vmax��2kBT � [4],
yielding an electron temperature of T � 120 mK, as well
as the positions and amplitudes of the peaks. Here, h �
0.11 eV�V is the lever arm, and Vmax denotes the position
of the peak maximum. Figure 1(b) shows typical peak
spacings DVI as a function of VI . Compared to con-
ventional dots defined by top gates [6–10,19], we find a
much smaller variation of the average peak spacing as VI

is tuned, although the fluctuation of individual spacings is
15% of EC . A linear fit gives a slope of d�DVI ��d�VI � �
6.7 3 1024. Hence, the capacitance between the dot and
gate I varies only by 3% over the whole scan range, as
compared to, for example, a factor of 3 in Ref. [7]. This
indicates that tuning gate I or II predominantly changes the
energy of the conduction band bottom, while the dot is only
slightly deformed. By applying the method of Ref. [20]
to a hard-wall confinement, we estimate x � 0.15 for our
dot as a lower limit.

In Fig. 2(a), five consecutive CB peaks are shown as
a function of B. A pronounced pair correlation of both
amplitude and peak position is observed (peak b corre-
lates with peak c, and peak d with peak e, respectively).
We interpret this parametric pair correlation in terms of
a model recently developed by Baranger et al. [24]. The
constant interaction model is used to subtract Ec from the
peak spacings. The remaining individual energy separa-
tions equal D�2 on average and reflect the fluctuating level
separations inside the quantum dot, which consist of two
parts. We assume that two paired peaks belong to the same
spatial wave function, labeled by i, of opposite spin, and
are split by an interaction energy ji , while the energy of
consecutive states with different orbital wave functions dif-
fers by Di 2 ji . This interpretation in terms of spin pairs
is supported by measurements of the separation between
strongly correlated peaks for 0 # B # 3 T. We find a lin-
ear increase on average that corresponds to a g factor of
about 0.45, which is very close to the bulk value of GaAs.
Since the separations between the two levels of equal spin
of spin pair i and (i 1 1), Di , and possibly also ji , vary
as a function of B, levels may cross and the ground state of
the dot can be either a singlet or a triplet state. Higher spin
states are expected to be unlikely [14,25]. At the singlet-
triplet transitions, kinks in the parametric peak evolution
occur and the pair correlation is interrupted [24]. We
can identify such kinks in our data, among other features.
Figure 2(b) shows the amplitudes of peaks c, d, and e. The
correlation between peaks d and e is very strong around
B � 0. For 0.4 T , B , 0.61 T, this correlation is inter-
rupted, while the amplitudes of peaks c and e are correlated
instead. In this regime, correlated kinks in the evolution
of peaks c and d are observed [Fig. 2(c)]. In Fig. 2(d),
a possible corresponding scenario for the parametric de-
pendence of energy levels is sketched: (left) two avoided
crossings occur between level pair i and level pair i 1 1.
This leads to the position of peaks c, d, and e as sketched
in Fig. 2(d), right, corresponding to the difference in en-
ergy upon changing the electron number in the dot. Conse-
quently, positions and amplitudes of peaks c and e should
be correlated in 0.4 T , B , 0.61 T, as observed. Note
that this correlation is interrupted around B � 0.5 T,
2119
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FIG. 2. (a) Logarithmic grayscale plot of parametric varia-
tions in a magnetic field B for five consecutive CB peaks. A
pair correlation in peak position amplitude is observed, which
is interrupted in certain ranges of B, for example, in the re-
gion between the dashed lines. (b) Parametric amplitudes for
peaks c, d, and e, offset by 0.2e2�h each. The correlation
between peaks d and e is lost in 0.4 T , B , 0.6 T, and e
correlates with c instead. (c) The corresponding position of the
peak maxima. The traces are offset for clarity. At magnetic
fields labeled by 1 and 3, kinks in the peak position occur,
while the separation between peaks d and e jumps across the
region of suppressed amplitude from jde to j

0
de. (d) Scheme

of a possible double anticrossing between spin-paired level i
and i 1 1 (left, the black arrows indicate the spin), which could
lead to the observed structure in the correlation for peaks c, d,
and e (right).
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possibly due to the influence of another energy level. We
emphasize that this kink structure, i.e., a double-anti-
crossing between two spin pairs, is the dominant one for
all peak evolutions. This fact does not depend on the
cooldown cycle.

Also, jde is not constant over the full range of B. While
jde � 0.05D for B , 0.22 T, the positions of peaks d
and e are not detectable in 0.22 T , B , 0.32 T, since
their amplitudes vanish. As the peaks reappear, jde has
jumped to j

�
de � 0.25D. We speculate that possibly a level

crossing has occurred in the regime where the amplitudes
are suppressed, and hence for B , 0.22 T, a different
level pair is at the Fermi energy than for B . 0.32 T.
Although j fluctuates as B is varied, a systematic change
of j with B cannot be clearly detected for B , 1 T, which
indicates that Zeemann splitting is smaller than the para-
metric fluctuations in this regime. From the data of Fig. 2,
we estimate the average interaction energy to j � 0.5D

by averaging over all peak pairs in their correlated regions.
Baranger et al. have estimated j � 0.6D for rs � 1.
Hence, our findings are in rough agreement with existing
theory, while we are not aware of a theoretical prediction
for sj . From the above phenomenology, we conclude that
for dots with stronger shape deformations, and hence more
level crossings, or in dots with larger rs (and thus larger
j), the spin pairing is frequently interrupted and difficult
to detect. This is possibly the reason why spin pairing has
not been observed in the earlier experiments [6–9].

We proceed by discussing the effect of spin pairing on
the NNS distributions. In Fig. 3, the measured histograms
of the normalized NNS distributions for GOE (a) and
GUE (b) are shown. Each individual VI sweep contains
15 CB resonances in the low coupling regime. The en-
semble statistics have been obtained by measuring G�VI �
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FIG. 3. Measured NNS distributions (gray bars) for B � 0 (a)
and B fi 0 (b). The bold solid curves are the fits to P

b
int�j�, sj� �,

with the fit results as indicated in the figure (see text). Also
drawn are the two components of P

b
int, i.e., the Gaussian dis-

tribution of separations between spin pairs, and its convolution
with the corresponding Wigner surmises.
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and by either changing the magnetic flux by one flux
quantum fo � h

e through the dot (GUE) or stepping VII

in units of one CB period (GOE), which corresponds to
the autocorrelation voltage for the peak amplitudes [10] in
our sample. The total number of peak spacings used is
120 for GOE, and 210 for GUE, respectively. The indi-
vidual level spacings s in units of D are obtained by using
the fit of Fig. 1(b); its expectation value is s � 0.5. Both
histograms are asymmetric and show no evident bimodal
structure. By including the effect of spin pairing into the
statistics, however, we can interpret them as bimodal dis-
tributions, modified by (i) The d function in the noninter-
acting NNS distribution P�s� with the expectation value
of sd � 0 [Eq. (1)] is shifted to sd � j� and, as a rea-
sonable assumption [26], broadened according to a Gauss-
ian distribution with the standard deviation sj� . Here, j�

denotes the interaction energy in units of D. (ii) Since one
level of a spin pair i is shifted upwards in energy by ji , the
separation between the upper level of spin pair i and the
lower level of pair (i 1 1) is given by Di 2 ji . Conse-
quently, Pb�s� in Eq. (1) is shifted to sPb � 1 2 j� and
convoluted with the Gaussian distribution function of j�.

Combining these two components, the modified NNS
distribution reads
P
b
int�j�, sj� � �

1
p

2p sj�

Ω
exp

∑
2

�s 2 j��2

2s
2
j�

∏
1 exp

∑
2

s2

2s
2
j�

∏
3 Pb�s 1 j��

æ
. (2)
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Here, “3” denotes the convolution. Since D is determined
by the dot size and the material parameters, we can fit
P

b
int�j�, sj� � to the measured NNS distribution with the

two fit parameters j� and sj� (Fig. 3). We obtain j� �
0.65 and sj� � 0.35 for GOE, as well as j� � 0.53 and
sj� � 0.34 for GUE. Hence, we find that j is higher
for GOE than for GUE, which is in agreement with the
theoretical prediction [24]. The fluctuation of j� is found
to be independent of the Gaussian ensemble and does not
vary continuously with B within experimental accuracy.
We emphasize that here, sj� is an empirical fit parameter
that includes not only the fluctuations of the spin splitting,
but also other contributions, in particular, the Zeemann
splitting and states with a total spin larger than 1�2 (i.e., we
have neglected situations in which ji . Di). Hence, sj�

can be regarded only as an upper limit for the fluctuation
of the interaction energy.

More experiments as well as theoretical work are neces-
sary in order to get a more complete understanding of the
fluctuations in the spin splitting.

In summary, we have observed spin pairing effects
in a —compared to dots investigated in earlier experi-
ments — rigid quantum dot with reduced electron-electron
interactions. The spin pairing persists as a magnetic field
is varied but is interrupted by kinks as well as other struc-
tures in the parametric evolution of the Coulomb blockade
peaks. We have extracted the average interaction energy
between states of identical spatial wave functions but
opposite spin. Furthermore, we explain the measured dis-
tributions of nearest-neighbor spacings as being composed
of the two branches of a modified, bimodal Wigner-Dyson
distribution, which takes spin splitting and its fluctuation
into account.
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