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Kondo Tunneling through Real and Artificial Molecules

Konstantin Kikoin and Yshai Avishai
Department of Physics, Ben-Gurion University, Beer-Sheva 84 105, Israel

(Received 20 July 2000)

When an asymmetric double dot is hybridized with itinerant electrons, its singlet ground state and
lowly excited triplet state cross, leading to a competition between the Zhang-Rice mechanism of singlet-
triplet splitting in a confined cluster and the Kondo effect (which accompanies the tunneling through
quantum dot under a Coulomb blockade restriction). The rich physics of an underscreened S � 1 Kondo
impurity in the presence of low-lying triplet-singlet excitations is exposed and estimates of the mag-
netic susceptibility and the electric conductance are presented, together with applications for molecule
chemisorption on metallic substrates.
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Recent experimental observations [1] of Kondo-type
resonance tunneling in quantum dots (QDs) agree with
theoretical predictions [2]. In most pertinent experiments
the contribution of Kondo tunneling to the conductance in
Coulomb blockade windows is observed on QDs with odd
occupation and spin 1�2 ground state (see, however, [3]).
Yet, it was pointed out that Kondo tunneling in QD with
even occupation is feasible, provided it has soft triplet
excitations. These occur both in QD formed by orbitally
nondegenerate electrons [4] and in vertical QDs with
shell-like structure of electronic states [5–7]. Transition to
the Kondo regime must then be controlled by an external
parameter (here a magnetic field). Indeed, both types of
field-induced Kondo tunneling were observed [8].

In this Letter, a novel mechanism is proposed, according
to which the transition from a singlet state in a weak cou-
pling regime to a triplet state in a strong coupling regime
is shown to be an intrinsic property of nanoobjects with
even occupation. It is manifested in tunneling through real
and artificial molecules in which the electrons are spa-
tially separated into two groups with a different degree
of localization. Electrons in the first group are responsible
for strong correlation effects (Coulomb blockade), whereas
those in the second group are coupled to a metallic reser-
voir [9]. The closest analog of such “double-shell dot”
(DSD) is the Zhang-Rice (ZR) singlet-triplet (S-T) pair
which is formed by two holes in Cu-O planes of high-Tc

perovskites [10]. The rich physics is then determined by
the competition between the ZR mechanism in a confined
cluster and the Kondo effect which accompanies the tun-
neling through the quantum dot under Coulomb blockade
confinement [2]. The necessary preconditions under which
the singlet ground state changes into a partially screened
S � 1 Kondo state due to hybridization with metallic leads
is the existence of charge-transfer singlet exciton in a DSD.
Moreover, unlike QD with odd occupation whose Hamil-
tonian is mapped on the Kondo-type sd-exchange Hamil-
tonian with a localized spin S � 1�2, DSD in contact with
metallic leads can be treated as a quantum spin rotator with
S � 1. Possible realizations of the model are suggested.
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A simple model which describes DSD was introduced
in [11], hereafter referred to as a “Fulde molecule” (FM).
It contains two electrons occupying a potential well which
is formed by deep and shallow valleys. The Hamiltonian
of an isolated FM is

Hd �
X
i

X
s

einis 1 V
X
ifij

d
y
isdjs 1 Hcorr . (1)

Here d
y
is creates a dot electron with spin s at valley

i � f, l while the coupling constant V � �dljV jdf� is the
interwell tunneling integral. There are two electrons in a
neutral ground state. Hcorr � Qnf�nf 2 1��2 is the in-
teraction term responsible for the Coulomb blockade of
charged states (here nf �

P
s d

y
fsdfs). The energy dif-

ference D � el 2 ef is postulated to exceed the overlap
integral, b � V�D ø 1. Two-electron states jL� of the
FM are classified as a ground state singlet jS�, low-lying
triplet exciton jT0�, jT6� and high-energy singlet charge-
transfer exciton jL�. To order b2 they are
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a � 1 2 b2. In this order, the energy levels EL are [11]

ES � el 1 ef 2 2Vb, ET � el 1 ef ,

EL � 2�el 1 Vb� .
(3)

The spin and charge branches of the excitation spectrum
of FM are characterized by rather different energy scales
ET 2 ES � d and EL 2 ES � D, respectively. An inter-
play between Kondo triplet excitations (with some charac-
teristic energy DK ) and ZR triplet excitations is expected
when d � DK in the regime of Kondo resonance induced
by tunneling to metallic reservoir [12].
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The tunneling problem is encoded in the Anderson Ham-
iltonian which incorporates Hd , together with the band
Hamiltonian Hb �

P
ks ekc

y
kscks for the electrons in the

leads, and the tunneling term Ht �
P

iks Wic
y
ksdis . Here

cks are operators for lead electrons and Wi�l,f are tun-
neling matrix elements, taken to be k independent. The
asymmetry of orbitals is also reflected in tunneling: the
strong localization of the f orbitals justifies the assumption
Wl fi 0 but Wf � 0. Next, the dot operators d

y
is are con-

veniently expressed in terms of Hubbard operators, XLl �
jL� �lj. Here L � S,T ,L stands for the neutral two-
electron states (2), and the index l � 1s, 3s is reserved
for the charged states j1s� �

p
1 2 b2 j fs� 1 bjls�,
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y
lsj0�. The tunnel ma-

trix elements in the Hubbard representation are given as
WLl

s � �ks, ljŴ jL�, where Ŵ is the operator responsible
for tunneling. The Anderson Hamiltonian then reads
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Using the Wigner-Eckart theorem, one can write WLl
s �

CL
slAl, where CL

sl are Clebsh-Gordan coefficients and
Al is the reduced matrix element. In a given vector-
coupling scheme the tunneling results in the following
transitions: jT6� $ j16,p6� (1); jT0� $ j1s,ps̄� (2);
jS� $ j1s,ps̄� (3); jS�, jT0� $ j3s, ks̄� (4); jT6� $
j36, k7� (5). Here ps and ks are, respectively, the states
with an excess electron (and hole) above (below) the Fermi
level of the lead. The energy costs of these transitions are

E1p,S � ep 2 el 1 bV , E1p,T � ep 2 el ,

E3k,S � el 1 4bV 1 eQ 2 ek ,

E3k,T � el 1 2bV 1 eQ 2 ek ,

(5)

where eQ � Q�V 2��Q 2 D�2	. It is assumed that the
Coulomb blockade eliminates three-electron states j3s�
and the tunnel coupling involves only the states j1s�
(processes 1, 2, and 3). The corresponding tunnel matrix
elements are

W1 
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1
p
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a
p

2
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The interplay between the singlet and triplet levels of
the DSD is analyzed by the renormalization group (RG)
method guided by the “poor man’s scaling” approach to
the Anderson model [13]. The renormalized levels EL are
determined by the equations

dEL�d lnD � GL�p . (7)

Here GL are the tunnel coupling constants,
GT 
 G � pr0jW j2, GS � a2G, r0 � D21.
(8)

Integrating (7) we find the scaling invariants E�
L which

determine the scaling trajectories

E�
L � EL 2

GL

p
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µ
pD
GL

∂
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The level ef is taken to be close to the bottom of the
conduction band [12], so that scaling does not significantly
affect it. It is then subtracted from the energies ET and
ES . Now we see that the energies EL decrease together
with D. Since GT . GS , the phase trajectory ET �D, GT �
should cross that of ES�D, GS� at a certain point. Thus,
quite remarkably, there is a crossover from singlet to
triplet ground state of the FM due to tunnel contact with
metallic leads. At the crossing point ET � ES Eq. (9)
implies p�E�

T 2 E�
S� � �GT 2 GS� ln�pD�G�, and the

renormalized bandwidth at this crossing point is eD �
D exp�2pD�G�. Another important crossing point is
the solution of D̄ � el�D̄�. Here scaling of the levels
ET ,S � ĒT ,S (and hence charge fluctuations) becomes
irrelevant. This is the Schrieffer-Wolff (SW) limit where
only spin fluctuations are responsible for scaling of the
Hamiltonian [13]. If eD . D̄, then

d̄ 
 ĒT 2 ĒS , 0 . (10)

The SW regime is reached after S-T crossover, and a
Kondo resonant tunneling is feasible. In the opposite case
there is a singlet ground state and a soft triplet excitation
at energy d̄ . 0 (see Fig. 1). The Kondo regime is still
accessible if a properly tuned external parameter induces
the pertinent crossover. This might be a magnetic [4] or
an electric field (gate voltage) shifting the dot level el up-
ward relative to ´F (Fig. 1, inset), an experimental aspect
not yet explored.

FIG. 1. Scaling trajectories [Eq. (7)] demonstrating crossovers
from singlet to triplet ground state: ET �D� (curve 1), ES�D� for
d�G � 0.03, 0.1 (curves 2, 3, respectively) at GS�GT � 0.8,
D0�G � 10. Inset: S-T transition as a function of the level
depth El � ´F 2 el with changing initial level splitting d.
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The physically richer case of triplet ground state
(d̄ , 0) is analyzed below. For a two-electron FM the
SW transformation [13] projects out the states jl, ks�
and maps H onto an effective Hamiltonian acting in two-
electron subspace and reduced conduction band, Heff �
HS 1 HT 1 HST , with

HS � ĒSX
SS 1 JS

X
s
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X
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Xmm 1 JTS ? s 1
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2
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HST � JST �P ? s�
(11)

(in XSS , XmS , and Xmm0

, S indicates singlet and m � 0, 6
stands for triplet spin states). The effective exchange
integrals are JT � 22jW j��´F 2 ēl�, JS � a2JT , and
JST � aJT . The electron operators appearing in (11) are
cs �

P
k cks; s � 221�2

P
ss0 cyst̂cs0 , in which t̂ are the

Pauli matrices. The singlet and triplet states are now in-
termixed, and the spin properties of FM are characterized
by the vector operators S and P in accordance with the
dynamical symmetry of the spin rotator:

S1 �
p

2 �X10 1 X02�, S2 �
p

2 �X01 1 X20� ,

Sz � X11 2 X22, Pz � 2�X0S 1 XS0� ,

P1 �
p

2 �X1S 2 XS2�, P2 �
p

2 �XS1 2 X2S� .

(12)

These operators obey the moment algebra (i � x, y, z):

�Pi ,Pj	 � i´ijkS
k , �Pi , Sj	 � i´ijkP

k ,

S ? P � 0 ,
(13)

and the Casimir operator is S2 1 P2 � 3. Surprisingly,
this special representation of O�4� played an important role
in particle physics many years ago [14].

The pertinent physics is that of an underscreened Kondo
impurity [15] in the presence of potential scattering and
low-lying triplet-singlet excitations. A similar model was
considered recently in Ref. [6] studying the physics of tun-
neling through vertical QD in a magnetic field [8]. In that
case, the electron orbital motion in a plane perpendicular
to the axis of the dot is characterized by the same quantum
number both in the dot and in the leads [7], and two or-
bitals participate in the S-T transitions. The models stud-
ied here and in Refs. [6,7] can be mapped onto a two-spin
1�2 Kondo model. The fictitious spin representation of
Ref. [7] is alternative to that of (12), but the latter seems
more compact as it respects the dynamical symmetry of the
Hamiltonian. In particular, in the two-spin representation
Heff includes four invariants, whereas Eqs. (11) contain
just a couple.

Following [13] the poor man scaling approach [16] is
now applied to the Hamiltonian Heff (11). Neglecting the
irrelevant potential scattering phase shift [17], a system of
scaling equations is obtained (cf. [6])
2092
dj1�d lnd � 2�� j1�2 1 � j2�2	, dj2�d lnd � 22j1j2

(14)

(here j1 � r0JT , j2 � r0JST , and d � r0D). The corre-
sponding RG flow diagram has the fixed point j1 � `, but
the resulting Kondo temperature TK �d̄� turns out to be a
sharp function of d̄ [6]. It is maximal when the T , S states
are quasidegenerate, jd̄j ø TK �d̄�. The scaling in this case
is governed by the effective integral j1 � j1 1 j2, and the
system (14) is reduced to a single equation

dj1�d lnd � 2� j1�2 (15)

with TK0 � D̄ exp�21�j1�. In the opposite limit jd̄j ¿
TK �d̄� the scaling of JST stops at D � jd̄j. Then j1,2�d̄� �

j1,2 ln21� jd̄jTk0
� and TK �d̄� � jd̄j exp�21�j1�d̄�	 ø TK0.

The singlet ground state S with zero TK is realized at
positive d̄ . TK �d̄�.

Natural candidates for DSD are lanthanocene molecules
Ln�C8H8�2 adsorbed on metallic substrate. Here the
mixed valent ion Ln � Ce, Yb is sandwiched between
two p-bonded carbon rings [18]. In these molecules
the electrons in a strongly correlated f shell are coupled
with loosely bound p electrons. The ground state of
this molecule is a spin singlet combination 1A1g� fp3� of
an f electron and p orbitals, and the energy of the first
excited triplet state 3E2g is rather small (�0.5 eV). In
the ytterbocene (hole counterpart of cerocene) the ground
state with one f hole is a triplet, and the gap for a singlet
excitation is tiny, �0.1 eV. The fullerenelike molecules
doped with Ce or Yb form another family with apparently
similar properties. In all these systems there is no direct
overlap between the strongly correlated f electrons and
the metallic reservoir. However, these electrons can in-
fluence the tunnel properties of the molecule via covalent
bonding with the outer p electrons which are coupled to
the reservoir.

Artificial candidates are double-dot structures (say D1
and D2) in tunneling contact with each other, but only D1
is coupled with the metallic leads. The respective gate
voltages are such that Vg1 , Vg2. Coulomb blockade then
prevents double charging of D2, so it can play the same
role as a 4f atom in molecular complexes described above.
The dot D1 donates the loosely bound electrons which
contribute to the tunnel current [19].

The salient features of FM stem from the qualitative
dependence of its ground state and low-energy spectrum on
the coupling constants V and W . The unusual S-T crossing
should show up in the magnetic properties of adsorbed
molecules and tunnel transparency of asymmetric double
quantum dots.

According to quantum chemical calculations of the
energy spectrum of the isolated cerocene molecule, the
Van Vleck paramagnetic contribution of S-T excitations is
too weak to overcome the Larmor diamagnetic contribu-
tion of C8H8 rings [11,18]. This situation can drastically
change for a FM adsorbed on a metallic layer. The
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fixed point j1 � ` corresponds to the scattering phases
hs�eF� � p�2. In the case of adsorbed FM this means
that the molecule has a residual spin 1�2 which interacts
ferromagnetically with the conduction electrons [15]. The
temperature dependence of magnetic susceptibility x�T �
is predetermined by the energy parameters d̄ and TK �d̄�.
In particular, x�T � conserves its Curie-like character down
to the lowest temperatures when d̄ , 0 and jd̄j ¿ TK �d̄�.
Then at T ø TK �d̄� the underscreened FM remains para-
magnetic, and its susceptibility is

x�T � � x0�T � �1 2 Z�T�TK �	 . (16)

Here x0 � 3C�4T , C � �gmb�2, and Z�x� is the invariant
coupling function (solution of the Gell-Mann–Low equa-
tion [20]). At T . TK �d̄� the triplet spin state is restored
and the Kondo corrections as well as admixture of singlet
state can be calculated by perturbation theory,

x�T � �
2C�3 2 exp�2jd̄j�T�	

9T

3

µ
1 2 ln21 T

TK �d̄�
2 j2 ln

D̄
jd̄j

∂
,

x�T � �
2C

T �3 1 exp�2jd̄j�T�	

µ
1 2 ln21 T

TK0

∂
,

(17)

respectively, for jd̄j ¿ TK0 and jd̄j ø TK0.
In an artificial FM, resonant scattering phase means per-

fect tunneling transparency of the QD at T � 0 and a
logarithmic falloff at high temperatures. To calculate the
tunneling transparency of FM sandwiched between two
leads, one should add an index n � L,R to the operator
cnks and switch to the standing wave basis [2]

p
2 cks6 �

cLks 6 cRks . Only the wave (1) contributes to the cur-
rent, and the zero bias anomaly in the differential con-
ductance G�T � (due to Kondo cotunneling) in the weak
coupling regime T . TK �d̄� is found as in (17):

G�G0 � 2 ln22�T�TK �d̄�	 1 j1j
2
2 ln�D̄�jd̄j� ,

G�G0 � 3 ln22�T�TK0	 ,
(18)

respectively, for jd̄j ¿ T ¿ TK �d̄� and T ¿ TK0 ¿ jd̄j.
Here G0 � 4pe2�h̄. Again the maximum effect is
achieved in a nearly degenerate case. At T ! 0 the
conductance tends to the unitarity limit.

In conclusion, the central result is that the interplay be-
tween ZR-type coupling in real and/or artificial molecules
and Kondo coupling between molecules and metallic reser-
voir may result in a crossover from a singlet spin state in
a weak coupling regime to an underscreened S � 1 state
at zero temperature. It was also pointed out that the onset
of Kondo regime in double quantum dot with even occu-
pation can be driven also by a gate voltage. This adds
new perspectives beyond earlier suggestions of reaching
the Kondo regime using magnetic field.
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