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Many-Body Diagrammatic Expansion in a Kohn-Sham Basis: Implications
for Time-Dependent Density Functional Theory of Excited States
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We formulate diagrammatic rules for many-body perturbation theory which uses Kohn-Sham Green’s
functions as basic propagators. The diagram technique allows one to study the properties of the dynamic
nonlocal exchange-correlation (xc) kernel fxc. We show that the spatial nonlocality of fxc is strongly
frequency dependent. In particular, in extended systems the nonlocality range diverges at the excitation
energies. This divergency is related to the discontinuity of the xc potential.
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Time-dependent density functional theory (TDDFT)
[1] offers a possibility to extend a powerful density-
functional formalism [2] to excited states of many-body
systems [3–5]. A substantial improvement of excitation
energies with respect to Kohn-Sham (KS) eigenvalues
was obtained for atoms and molecules [3–6] using
a variety of approximations for a dynamic exchange-
correlation (xc) kernel fxc � dyxc�r, t��dn�r0, t0� (yxc
is an xc potential). However, in solids the wrong KS
band gap remains unchanged regardless of the approxi-
mation used, albeit the dielectric function is on average
improved [7].

This situation, as we show below, reflects an extremely
nonlocal behavior (in r space) of fxc�r, r0� at excitation
frequencies. The nonlocality range is as large as the system
size and hence diverges in extended systems. None of
the up-to-date approximations account for this behavior as
they all employ the adiabatic (frequency-independent) xc
kernels.

In this paper we develop a perturbative technique with
KS Green’s functions as the bare propagators. In essence,
it is a diagrammatic expansion of the Sham-Schlüter equa-
tion [8], which maintains a correct electron density in
every order of the perturbation theory. We find that at
resonant frequencies the kernel fxc is proportional to the
discontinuity of yxc. This explains the anomalous nonlo-
cality of fxc, since a constant shift of a potential due to
an extra particle is felt by another particle anywhere in the
system.

In the framework of TDDFT the excitation energies are
commonly calculated [3,4,6] from the poles of the linear
response function x�r, r0, v�. The latter is related to the
KS susceptibility xS�r, r0, v� by

x�v� � xS�v� 1 xS�v� �VC 1 fxc�v��x�v� , (1)

where VC � e2�jr 2 r0j is a Coulomb repulsion and the
kernel fxc enters as an additional dynamic interaction.

Alternatively, the poles of x�r, r0, v� can be found as
the eigenvalues of a linearized equation for density matrix
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�v 2 ĤS�r1� 1 ĤS�r2��dr�r1, r2�

2 rS�r1, r2�
Z

dr�Ṽv�r1, r� 2 Ṽv�r, r2��dr�r, r� � 0 ,

(2)

where Ṽv � VC 1 fxc�v�, ĤS�r� is the KS Hamiltonian,
and rS�r, r0� �

P
j njc

�
j �r�cj�r0� is the equilibrium KS

density matrix with the KS orbitals c
�
j �r�. Equation (2)

clearly shows that the correction to the KS excitation
energies originates from the Hartree-type energy of the
excitation-induced density fluctuation dn�r� � dr�r, r�.
In the KS basis Eq. (2) takes the form

�v 2 vS
ij�drij 2 gij

X
kl

�FijjṼvjFkl�drkl � 0 , (3)

where v
S
ij � ES

i 2 ES
j is a KS excitation energy, gij �

ni 2 nj is the difference of the occupation numbers, and
Fij�r� � c

�
i �r�cj�r�. For electron-hole (e-h) excitations

the ordinary perturbation theory gives the energy shift
Dvij � vij 2 v

S
ij in the first order as

Dv
�1�
ij � �Fij�r�jVC�r, r0� 1 fxc�r, r0, vS

ij�jFij�r0�� ,

(4)

which is identical to the result of the first-order Laurent
expansion of x�r, r0, v� [3]. Equations (2) and (3) are
equally valid for finite and for extended systems, whereas
the perturbative result (4) requires that states i and j are
nondegenerate (see below). In particular, Eq. (4) gives
a shift of the energy gap in a bulk semiconductor with
nondegenerate band edges.

Let us consider dependence of the first-order correction
(4) on the size of a system L � V 1�3 at fixed average den-
sity N�V . As Fij�r� contains a normalization factor 1�V ,
the first term in Eq. (4) is proportional to e2�L. This is
the Coulomb energy of the density variation due to an e-h
excitation, which is infinitesimally small in extended sys-
tems. The second term crucially depends on the nonlocal-
ity of fxc, i.e., on the extension of an xc hole. At v � 0
the nonlocality range is about the interparticle distance
l � �V�N�1�3. This feature is reproduced by the popu-
lar optimized effective potential (OEP) approximation [3],
© 2001 The American Physical Society
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whereas in adiabatic local density approximation (LDA)
[9] fxc is a point interaction. Assuming that at resonance
frequency fxc�vij� has a similar nonlocality we find that
the second term in Eq. (4) is proportional to 1�N and van-
ishes as L23 (see, however, [10]). Thus any xc kernel
which is finite and decays at infinity does not contribute
to vij in extended systems. Using the many-body pertur-
bative approach formulated below, we show that a nonva-
nishing xc correction arises due to the divergency of the
nonlocality scale of fxc�vij�. We employ the Matsubara
formalism at nonzero temperature T which enables us to
obtain any physical retarded function through analytic con-
tinuation [11]. Assuming that the xc potential yxc�r� and
the ground state density are known, we represent the Ham-
iltonian of a system as a sum of the KS Hamiltonian ĤS

and the perturbation V̂ , where

V̂ � Ŵ 0 2
X̀
k�1

Z
dr y�k�

xc �r�n̂�r� . (5)

In Eq. (5) Ŵ 0 is a two-particle interaction with the Hartree
part being subtracted, n̂�r� is a density operator, and we
assume that the xc potential yxc can be expanded in a
power series yxc �

P`
k�1 y

�k�
xc , where y

�k�
xc � e2k .

Following the standard procedure [11] we define the
Green’s function

G�X, X 0� � 2�TtCS�X�C1
S �X 0�ŝ���ŝ� , (6)

where X � �r, t� (t is an imaginary time), CS�X� is a
field operator in a KS interaction representation, and ŝ

is a Matsubara S-matrix [11] which corresponds to the
perturbation V̂ of Eq. (5). The angular brackets in Eq. (6)
denote averaging over the KS equilibrium state.

A perturbative expansion of G�X, X 0� contains along
with the pair interaction graphs the diagrams related to
the scattering by “external” potentials y

�k�
xc . To achieve

a closed scheme one needs a complementary graphical
representation of yxc�r�, which can be obtained from the
condition of the density conservation. The Green’s func-
tion (6) can be written in the form G � GS 1

P`
k�1 G�k�,

where GS is a KS Green’s function and G�k� is a kth order
correction. As the KS system possesses an exact density,
the variation of the density due to interaction (5) must van-
ish. Applying this requirement in every order we obtain

dn�k��r� � T
X̀

n�2`

G�k��r, r, vn� � 0 , (7)

where vn � pT �2n 1 1�. Equation (7) is equivalent to
the well-known Sham-Schlüter equation [8,12]. A suc-
cessive solution of Eq. (7) allows one to construct y

�k�
xc

for every k. For example, the first-order correction G�1�

is presented in Fig. 1a, where the solid line is the KS
Green’s function and the dashed line is the Coulomb inter-
action. Substituting G�1� into Eq. (7) we get y

�1�
xc as shown

in Fig. 2a, where the wiggled line stands for the inverse
KS response function x

21
S �r, r0�. The final first-order cor-

rection to the Green’s function is shown in Fig. 1b. Note
FIG. 1. First-order corrections to the Green’s function.

that y
�1�
xc (Fig. 2a) exactly corresponds to the x-only OEP

yx . Given y
�1�
xc we solve Eq. (7) for k � 2 and obtain eight

graphs for y
�2�
xc (Figs. 2b–2i). From the further iterations

we deduce the following diagrammatic rules for yxc in ar-
bitrary order: (i) Draw all graphs for density according to
the usual rules [11] and attach wiggled lines to the external
point of each graph. (ii) Whenever it is possible separate
the graphs into two parts by cutting two fermionic lines.
Join the external fermionic lines of these parts and connect
them by the wiggled line. Do not cut lines attached to the
external wiggled line. (iii) If a new graph is separable, re-
peat (ii). (iv) If several cross sections are possible, repeat
(ii) and (iii) for all of them. (v) Leave only nonequiva-
lent graphs. For example, graphs (a)–(e) in Fig. 2 appear
according to (i). Graph (f) is obtained from (d) applying
(ii). Graphs (g)–(i) originate from (e) by the successive
application of (ii)–(v).

Given a diagrammatic representation for yxc we can eas-
ily construct a graphical expansion for any quantity, e.g.,
for one particle Green’s function, a response function, or
an energy. We find that the series for the energy coin-
cides with the expansion obtained in a different context in
Ref. [13]. As the diagrammatic expansion is derived main-
taining the exact density in every order, the series for yxc
is in fact a graphical representation of the Görling-Levy
perturbation theory (GLPT) [14]. An obvious advantage
of the graphical method is a possibility to construct y

�k�
xc

for every k in a transparent form.
An important feature of the KS-based diagram technique

is that every irreducible self-energy insertion S�r, r0� is ac-
companied by the local counterterm which has the struc-
ture of the average of S: �GSSGS� �GSGS�21. This term
guarantees the density conservation and locally reduces the
effective field S. The first-order correction (Fig. 1b) gives
an example of this compensation. It is interesting to note

FIG. 2. First- (a) and second-order (b)–(i) diagrams for xc
potential.
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that the standard diagram technique can be reformulated
in a similar fashion. One has to explicitly introduce a cor-
rection to the chemical potential to compensate the change
of the total number of particles (averaged density) in ev-
ery order of the perturbation theory. This leads to similar,
but spatially averaged, counterterms. Apparently the local
compensation in the KS-based technique is more efficient.
This means that KS particles are much closer to the true
quasiparticles than bare electrons.

Our graphical method has an obvious connection to the
GW approximation [15]. Let us collect in every order of
the perturbation theory only the bubble diagrams (e.g., the
graph in Fig. 2c) and sum them up. The corresponding cor-
rection to the Green’s function is still given by Fig. 1b, but
with the RPA-screened interaction. While the first graph in
Fig. 1b is exactly the GW self-energy, the second one de-
viates from the common GW prescription. Instead of sub-
traction of the whole yxc, one has to use an approximate
yxc (even if the exact yxc is known). This is a requirement
of internal consistency and facilitates the density conser-
vation. From this point of view it is clear that the KS
eigenvalues describe well quasiparticles in metals (e.g., the
shape of the Fermi surface), but not in semiconductors. In-
deed, for a short-ranged screened interaction in metals the
first (nonlocal) and the second (local) term in Fig. 1b al-
most cancel (they would cancel exactly for a point inter-
action). Conversely, in insulators there is no pronounced
cancellation since the interaction is long ranged. As a re-
sult, the correction to the KS energies gets larger the larger
the gap is.

To study the e-h excitations one has to consider the
linear response function x�r, r0, vn�. An integral equation
for this function,

x�vn� � x̃�vn� 1 x̃�vn�VCx�vn� , (8)

contains irreducible polarization operator x̃�vn�. We split
x̃�vn� into two parts: x̃�vn� � xS�vn� 1 P�vn�, where
P�vn� includes all (self-energy and vertex) corrections to
the irreducible susceptibility x̃�vn�. The first-order cor-
rections to x�vn� are shown in Fig. 3, where the first four
terms correspond to the first-order correction P�1��vn�.
Thus the total response function in the first order is

x�vn� 	 xS�vn� 1 P�1��vn� 1 xS�vn�VCxS�vn� .

(9)

The graphs in Fig. 3 display the physical meaning of all
corrections to the e-h excitation energy. The first two dia-
grams as well as the third and the fourth graphs are the self-

FIG. 3. First-order corrections to the response function.
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energy corrections for an electron and a hole, respectively.
The last term is the Coulomb energy of the excitation-
induced charge density, while the fifth graph is the e-h
interaction. Summation of the ladder diagrams in the e-h
loop would allow one to include excitonic effects, which
we do not consider here.

Performing summation over frequencies with subse-
quent analytic continuation in the first five diagrams in
Fig. 3 we obtain P�1��v� close to the excitation frequency
v

S
ij :

P�1��v� � Fij�r�F�
ij�r0�

gijDij

�v 2 v
S
ij�2

, (10)

Dij � �ci�r�jyF�r, r0� 2 yx�r�d�r 2 r0� jci�r0��

2 �cj�r�jyF�r, r0� 2 yx�r�d�r 2 r0� jcj�r0��

2 �Fii�r�jVC�r, r0� jFjj�r0�� . (11)

In Eq. (11) yF�r, r0� is the Fock nonlocal potential and
yx�r� is the local exchange potential or OEP. Appar-
ently gijDij is a shift of the excitation energy due to the
first five graphs in Fig. 3. The last graph gives a correc-
tion which is the first term in Eq. (4). The total correc-
tion Dv

�1�
ij � gij�Dij 1 �FijjVCjFij�� coincides with the

first-order GLPT [16,17]. With the increase of a system
volume the last term in Eq. (11) (the energy of the e-h in-
teraction) vanishes as e2�L. Conversely, the first two terms
remain finite (of the order of e2�l) and describe, e.g., an
exchange shift of the band gap of a semiconductor.

The above results can be restated in terms of TDDFT.
In the linear approximation, i.e., after the first iteration,
Eq. (1) yields

x�vn� 	 xS�vn� 1 xS�vn� �VC 1 fxc�vn��xS�vn� .

(12)

A comparison to Eq. (9) leads to the following relation:

fxc�v� � xS�v�21P�1��v�xS�v�21. (13)

As the linear y
�1�
xc is simply the x-only OEP (Fig. 2a),

Eq. (13) should provide a dynamical OEP kernel fOEP
x �v�.

Indeed, a functional differentiation of the graph Fig. 2a
versus density yields Eq. (13). A similar expression for
fOEP

x �v� was derived in [18] by solving the dynamic OEP
equations. Our approach gives a graphical interpretation
of this result.

At any nonresonant frequency, e.g., in statics v � 0,
the nonlocality range of fxc Eq. (13) is about an interpar-
ticle distance l. The correction to the excitation energies
Eq. (4) depends, however, on the kernel at resonance
fxc�vS

ij�. Let us consider a spatial extension of this
kernel using Eq. (13). To calculate x

21
S �v� at resonance

we write xS � gijFij�r�Fij�r0���v 2 v
S
ij� 1 xr �r, r0�,

where xr is a regular part. Substituting P�1��v� (10)
to Eq. (13) and performing calculations we arrive at the
following result:
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fxc�r, r0, vij� � Dij

R
dr1 dr2 x21

r �r, r1�Fij�r1�F�
ij�r2�x21

r �r2, r0�
�F�

ij�r2�jx21
r �r2, r1�jFij�r1��2 . (14)
The spatial scale of fxc�r, r0, vij� is governed by functions
Fij�r� which extend over the volume. Hence the nonlocal-
ity range of the resonant fxc is simply a system size, which
facilitates a finite xc contribution �Fijjfxc�vij�jFij� �
Dij in Eq. (4). This result was considered in Ref. [17]
as an evidence of equivalence of GLPT and TDDFT. We
emphasize that this equivalence holds only for a dynamic
xc kernel at resonant frequency and is not fulfilled by any
static approximation.

For simplicity we assumed that the transition at vij con-
nects nondegenerate states. In a degenerate case the result
is analogous to Eq. (14) but contains a sum over all e-h
states with the same vij [19]. For a finite degeneracy (e.g.,
a semiconductor with degenerate band edges) the reason-
ing of (14) regarding a nonlocality of fxc remains unal-
tered. A continuous degeneracy (as for states above the
band edges) requires a special consideration which will
be published elsewhere. The inherent long rangedness of
fxc�v� at frequencies above the e-h continuum has been
pointed out in [20]. The nonlocality of (14) is, however, of
a different nature. It occurs exactly at resonance frequen-
cies and consequently affects the e-h excitation energies.

It is straightforward to construct a kernel fGW
xc �v� which

reproduces the first-order GW result. One has to replace
P�1��v� in Eq. (13) by P

�1�
scr�v� which is defined by the

first four graphs in Fig. 3, but with the RPA-screened in-
teraction. TDDFT formalism with this fGW

xc �v� exactly
reproduces the GW approach. For a semiconductor with
the band gap Eg, the xc kernel at v � Eg, which is re-
sponsible for the band gap correction, is given by Eq. (14)
with Dij � DN11 2 DN21. Here DN11 (DN21) are the
discontinuities of the xc potential upon addition (removal)
of a particle. The fundamental relation of fxc at resonant
frequency to the discontinuity of yxc has a simple physical
interpretation. The jump of yxc signifies a constant shift
of a potential throughout the system due to addition of one
particle. It means that another probe particle interacts with
the first one anywhere in a system. This should be inter-
preted as an xc interaction with a length scale of the size
of a system and with an amplitude equal to the discontinu-
ity of yxc. Importantly, this result holds only at resonant
frequency where a real creation of the e-h pair takes place.
The arguments above show that not only any static approxi-
mation but also any LDA-based dynamic approximation
(including any gradient corrections) for fxc cannot provide
consistent results for excitation energies and a construc-
tion of explicit orbital- and frequency-dependent function-
als similar to Eq. (13) is required. An alternative is a direct
calculation of the irreducible polarization operator using
the diagram method outlined above. This formally allows
us to express excitation energies as functionals of the KS
orbitals and consequently of the ground state density.
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