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Heterogeneities in Supercooled Liquids: A Density-Functional Study
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A metastable state, characterized by a low degree of mass localization, is identified using density-
functional theory (DFT). This free energy minimum, located through the proper evaluation of competing
terms in the free energy functional, is independent of the specific form of the DFT used. Computer
simulation results on particle motion indicate that this heterogeneous state corresponds to the deeply
supercooled state.
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The properties of supercooled liquids are of much
current interest and are being studied from different
approaches related to their thermodynamic as well as
dynamic aspects [1–6]. A normal liquid is characterized
by a homogenous density, and when it is supercooled
below the freezing transition it continues to stay in the
amorphous phase. With the increase in density a solid-
like phase is formed with the particles being localized
around their mean positions on a random structure. The
underlying lattice on which such localized motion takes
place is related to the time scales of relaxation in the
supercooled liquid. While the supercooled liquid starts
to attain solidlike properties, structurally it does not have
any long range order like the one present in a crystal.
The heterogeneity in glassy systems over length and
time scales has been studied in several recent works [7]
related to computer simulations. Here we consider the
heterogeneous density profile in the liquid and investigate
the question of having metastable states in between the
homogeneous liquid state and the regular crystalline state.
The stability of such a structure has been studied in this
work from a thermodynamic point of view, using the
standard methods of density-functional theory (DFT).
It provides the means to test if a given structure, i.e., a
configuration of atoms is the “most” stable at a specified
temperature and density. This method has generally been
used [8–12] for the study of a liquid freezing into an
ordered crystalline state through a first order transition.

In practical calculations of the DFT an explicit func-
tional form for the inhomogeneous density function against
which the free energy functional is tested is needed. One
very successful prescription of density distribution is as a
superposition of density profiles centered on a lattice,

r��r� �
X

i

f�j�r 2 �Rij� , (1)

where the � �Ri� denotes the underlying lattice and the
function f is taken as the isotropic Gaussian f�r� �
� a

p �3�2e2ar2
[10]. Here a is the variational parameter that

characterizes the width of the peak, which represents the
degree of localization of mass in the system. Thus the
homogeneous liquid state is characterized by Gaussian
profiles of very large width such that each provides the
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same contribution in the sum at all spatial positions.
Singh et al. [13] have shown that the distribution of
�Ri over a random lattice determined from the Bernal

packing [14] allows a minimum for the free energy. The
state corresponding to this becomes more stable than the
homogeneous liquid state for packing fraction h . 0.59.
This is obtained for very large a that corresponds to an
inhomogeneous and highly localized density distribution
that has been termed as the “hard sphere glass.” This
metastable state, however, is not compatible with the
experimental findings [5,6] which find the metastable su-
percooled state with a much lower degree of localization.

We have studied this through the various [8,11] formu-
lations of the DFT for the density profiles centered around
a random lattice that corresponds to a heterogeneous den-
sity distribution. Here we consider the density profiles that
are less localized than the so-called hard sphere glass by
evaluating the free energy of the system for a values that
are considerably smaller than what was previously studied.
We also consider the effects of fluctuations in the width
around a mean value. The key result of this study is the
observation of a free energy minimum where the density
function corresponds to the small a region. This minimum
is seen apart from the usual high a minimum, as reported
in the earlier works [13,15,16].

The expression for the total free energy contains
two parts —the ideal gas term and the interaction term,
F�r� � Fid�r� 1 Fex�r�. The ideal gas term of the free
energy functional (in units of b21) is given by

Fid�r� �
Z

d �r r��r� ��� ln�^3r��r�� 2 1��� , (2)

^ being the thermal wavelength. In the earlier works
[13,15,16], where highly localized structures have been
investigated, generally a was chosen to be large (greater
than �50) and Eq. (2) was approximated by its asymptotic
value for large a,
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However, in the low a range where overlapping Gaussians
from different sites contribute, we evaluate this term ex-
actly from the computation of the integral given in (2) as
© 2001 The American Physical Society
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where g� �R� is the site-site correlation function which pro-
vides the structural description of the random structure
used. We have used the Bernal’s random structure [14]
generated through the Bennett’s algorithm [17]. We ap-
proximate the g� �R� as

g� �R� � gB
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h
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#

, (5)

where h denotes the average packing fraction and ho

is used as a scaling parameter for the structure [15,16]
such that at h � ho Bernal’s structure is obtained. The
ideal free energy evaluated using this exact treatment,
Eq. (4), is shown in Fig. 1 for ro � 1.0. This agrees on
extrapolation to the limit of the a ! 0 [i.e., r��r� ! ro]
result, i.e., 21. The exact evaluation starts approaching
the asymptotic (large a) result (dashed line), for a .

20 within 5% as shown in the figure. The interaction
part is evaluated using the standard formalism used by
Singh et al. [13] with the expression for the Ramakrishnan-
Yussouff (RY) functional,

DFex � 2
1
2

Z
d �r1

Z
d �r2

3 c�j�r1 2 �r2j; ro�dr��r1� dr��r2� , (6)

that gives the difference in the free energies of the solid
and liquid phases of average density ro . Here dr��r� is the
density fluctuation from the average value ro . We use the
solution of the Percus Yevick (PY) equation with the Verlet
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FIG. 1. Ideal gas part of the free energy per particle (in units
of b21) vs a (in units of s22) for density r�

o � 1.0. The solid
line is obtained from the exact evaluation, i.e., Eq. (4), and the
dashed line is the result from the approximation.
Weiss correction for the direct correlation function, c�r�
[18,19]. The low a minimum becomes more stable than
the homogeneous liquid state �a ! 0� beyond h � 0.576
(ro � 1.10). In order to clarify this point we have shown
in Fig. 2, the minimum value for the difference of the
free energy per particle (for the corresponding a value)
against the density. The corresponding hard sphere glass
state becomes more stable with respect to homogeneous
liquid state at average density h � 0.597 [13]. Moreover,
the new minimum found in the strongly overlapping region
(low a) can be reached continuously from both the liquid
state minima and the hard sphere glass state. We also
stress here that the expansion (6) for the free energy of the
liquid used in the RY approach is a better approximation
for the minima observed at low a than in the case of the
highly localized structure called the hard sphere glass. In
Fig. 3, we show the free energy evaluated with the density
function obtained for alpha extending to small values. The
minimum appears at a � 18 for a ro of 1.12. The free
energy minimum identified in Ref. [13] also occurs but for
a very high value of a and corresponds to highly localized
structures referred to as the hard sphere glass. The free
energy corresponding to the low a minima is less than
that for the hard sphere glass state throughout the density
range we have considered, i.e., h # 0.60. However, if the
background lattice is taken as a regular crystalline one,
then the free energy does not show any minimum in the
small a region unlike the case of an underlying amorphous
structure. This indicates an inhomogeneous structure of
strongly overlapping Gaussians centered around regular
lattice sites is ruled out. Indeed, such uniform structures
are never seen in simulations.

This minimum is seen only for the amorphous structure
which signifies a heterogeneous density distribution. This
can be given a more quantitative form in the following
way: The a corresponding to the minimum free energy
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FIG. 2. Free energy difference per particle (Df) (in units of
b21) vs density in the low a regime.
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FIG. 3. Difference in free energy per particle (Df) (in units
of b21) vs a (in units of s22) in the low a regime (r�

o �
1.12). The inset demonstrates the continuity of the curve near
the maximum.

value is inversely proportional to the root mean square
displacement of the particles from their sites, which also
defines the Lindemann [20] ratio. The two minima with
the random structure for low and high value of a, respec-
tively found in the present work and in Refs. [13,15,16]
correspond to very different degrees of localization of
the particles. The simulation results [5,6] show that the
Lindemann ratio of supercooled liquid is approximately
3 times that of crystal at freezing (Fig. 2 of [5]). We
have observed a similar relation for the metastable state
corresponding to the small a minimum. This is shown in
the Fig. 4 where we plot the respective root mean square
displacement (d 	 1�

p
a ) for both the supercooled

and the crystal case. This fact strengthens the case for
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FIG. 4. Average displacement d (in units of s) vs r�
o . The

dashed curve depicts the supercooled phase and the solid line is
for the fcc crystal.
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identifying it with the supercooled state seen in computer
simulations as compared to the highly localized hard
sphere glass which shows a level of localization close
to that of the corresponding crystal. The barrier height
between the homogenous and the heterogeneous phases
grows with the increase in the average density, as shown
by points in Fig. 5. It follows a power law increase
with the height diverging at packing fraction �0.62 and
exponent 1.57 as shown by the solid line in Fig. 5. In all
these calculations we have used ho � 0.64. The pressure
(P) and Bulk modulus (E) of the corresponding structure
are computed using the first and second derivatives of the
total free energy per unit volume [16]. We show in Fig. 6
results computed using the present model, for a random
structure corresponding to ho � 0.68 in (5). The total
free energy is calculated using the modified weighted
density approximation (MWDA) treatment [11] with a
semiempirical form of c�r� [21].

We have also considered the fluctuation of the Gaussian
density profile’s width parameter a over different sites in
the random lattice to incorporate a higher degree of hetero-
geneity. This is modeled by attaching an independent prob-
ability distribution function, P�ai�, to each lattice site, that
governs a value. We chose P to be Gaussian peaked at ā

and spread (half-width) ār , to compute the free energy av-
eraged over the a fluctuations as a function of the parame-
ters ā and r . These fluctuations in a bring about an overall
increase in the free energy of the system, i.e., the system
stability decreases on account of increased heterogeneity
at the individual unit of mass concentration. This is also
self-consistent with the choice of using the direct correla-
tion function of a hard sphere system with single size.

The motivation of this study has been to evaluate the sta-
bility of heterogeneous density distributions from a purely
thermodynamic viewpoint. The existence of the free
energy minimum corresponding to a density distribution
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FIG. 5. Barrier height h (in units of b21) between the liquid
and the supercooled phase vs the average packing fraction h.
The solid line is a power law fit to these data.
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FIG. 6. The bulk modulus E [in units of �bs3�21] vs density
for the amorphous structure. In the inset, pressure P [in units
of �bs3�21] vs density is shown.

of overlapping Gaussians centered around an amorphous
lattice depicts the deeply supercooled state with a hetero-
geneous density profile. This state can be reached continu-
ously from the homogeneous liquid state or the so-called
hard sphere glass minimum. As the density increases, the
energy barrier to come out of this minimum grows. The
identification of this inhomogeneous state is indeed linked
to the proper evaluation of the ideal gas part of the free
energy. In earlier works this was generally approximated
by the asymptotic formula given in Eq. (3) which works
well for large values of a representing highly localized
structures. In the present work with the proper evaluation
of the ideal gas term for the heterogeneous density, the
role of configurational packings on the free energy is taken
into account. From our comparison with the Lindemann
parameter values (Fig. 4) it follows that this heteroge-
neous state with a lesser degree of mass localization
does agree with the computer simulation results better, as
compared to the so-called hard sphere glass observed by
Singh et al. [13]. This new minimum does not occur for
the structure centered on an ordered lattice like the fcc
strengthens the case for the heterogeneous glassy phase.

The qualitative nature of this state is different from the
hard sphere glass state. The eventual transition of the liq-
uid into any of these states will be determined by consid-
ering the dynamics of fluctuations around these minima.
The present work is intended to explore the nature of the
free energy landscape in the deeply supercooled state. The
transformation between different minima will depend on
the smearing effects due to coupling of fluctuations. We
have used here the Bernal packing to define the underlying
lattice, but these studies can be extended to different types
of random structure, even taking results from computer
simulation studies. We also mention that this new mini-
mum shows up for different forms of the density-functional
theory and with different direct correlation functions. This
minima is observed with the treatments of both the RY
functional and the MWDA [11] even with the PY c�r�
without any tail. Indeed, improvement of these results can
be obtained with a better input for the structure functions
using improved techniques [22]. Including higher order
correlations, namely the three point functions, in the ex-
pression (6) is also expected to account for increased co-
operativity at high density.
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