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The low-temperature phase coexistence of size-asymmetric primitive model electrolyte solutions has
been investigated by means of Monte Carlo simulations. Binodal curves and critical parameters are re-
ported as a function of size ratio A = o /o_ in the range 0.05 to 1. Both the critical temperature and the
critical density are found to decrease as A decreases. These trends are in conflict with available theoreti-
cal predictions. For highly asymmetric systems, the depression of the critical parameters is accompanied
by the formation of large chainlike and ringlike structures, thereby giving rise to considerable finite-

size effects.
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The so-called primitive models (PM) provide the
simplest representation of electrolyte solutions. In these
models, the system is represented by a binary mixture of
charged hard spheres immersed in a dielectric continuum.
Many well-known theories, including that of Debye and
Hiickel [1], are based on such models [2—-5]. The special
case in which both anions and cations are constrained to
have the same charge and size (the restricted primitive
model, RPM), is now believed to exhibit vapor-liquid
coexistence at low temperatures. However, in spite of its
importance, only recently has some consensus emerged
regarding the nature of the coexistence curve and the
precise location of the critical temperature 7, and the
critical density p. [6—8].

Most theoretical work to date and all published simu-
lation studies have been limited to the restricted primitive
model. Both from the practical and fundamental points of
view, however, asymmetric electrolytes are considerably
more important than perfectly symmetric systems. The
lack of theoretical and numerical work on asymmetric sys-
tems is therefore witness to the difficulties associated with
calculations of the vapor-liquid coexistence curve of primi-
tive models.

This work provides a molecular simulation study of
the effects of size asymmetry on the phase behavior and
critical properties of primitive models. The calculations
presented here have been possible through the advent of
recently proposed hyperparallel tempering Monte Carlo
techniques [6]. The simulated trends for 7. and p. are
compared to available theoretical predictions [9].

In our simulations we consider a system consisting of
2N hard spheres, half of them carrying a positive charge
and the other half carrying a negative charge. The charge
numbers z; for all ions are the same. The diameters of
cations and anions are denoted by o4+ and o_, respec-

tively. Ions interact via a hard-core and a Coulombic
potential energy functions given by
Foo rij = 0ij
Ui = & iz (H
Y 7DD, r_,j rij = Oij s
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PACS numbers: 64.70.Fx, 02.70.Rr, 05.70.Jk, 61.20.Qg

where o;; is the collision diameter between ions i and j,
given by o;; = (0 + 0})/2, e is the charge of the elec-
tron (e = 1.602 X 107! C), and Dy is the dielectric per-
meability of vacuum (Dy = 8.85 X 10712 C2N"!m™2).

The parameter of central interest to this paper is the
ratio of diameters of cations and anions, denoted by
A = o4+ /o—. Throughout this Letter, results are reported
in reduced units. The quantity o~ = (o+ + o-)/2 is
introduced, and the reduced temperature is defined as
T* = 4w DDgo+kgT/e*. The reduced density is given
by p* = 2N o3 /V, and the reduced box size is defined as
L* =L / g+.

The low temperatures at which the liquid-vapor coexis-
tence occurs in the RPM pose considerable challenges for
traditional simulation methods, and a number of biased
sampling techniques have been experimented with in at-
tempts to overcome them. Recently, Panagiotopoulos and
Kumar [10] proposed a departure from a continuum by dis-
cretizing the RPM model into a finely spaced grid, thereby
reducing the calculation of interaction energies to the
handling of a look-up table. In this work, as in our
recent study of the RPM, we have opted to avoid such
approximations, and simulations have been conducted in a
continuum using the hyperparallel tempering Monte Carlo
method (HPTMC) [6]. Recent studies have shown that,
for complex fluids, HPTMC can improve considerably the
sampling of phase space [11]. In HPTMC, simulations
are conducted simultaneously on several boxes; in the
particular implementation employed here, each box repre-
sents a grand canonical ensemble at specified values of w,
V, and T. During a simulation, trial attempts are made to
exchange configurations between different boxes. These
are accepted according to probability criteria that ensure
proper sampling of the relevant ensembles corresponding
to the specified set of chemical potentials, volumes,
and temperatures of the various simulation boxes. For
details of the method, readers are referred to the original
publications [6,11]. As in our previous work, long-range
interactions are calculated by the Ewald-sum method,
with conducting boundary conditions.
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Joint histograms are collected for the distribution of
a number of particles and total potential energy of each
simulation box. Histogram reweighting techniques [12,13]
are then used to combine these histograms and to calculate
binodal curves. Apparent critical parameters for a given
box size are estimated by means of mixed-field finite-size
scaling techniques [14,15], assuming that the criticality of
PM belongs to the Ising universality class.

Figure 1 shows simulated binodal curves for asymmet-
ric ionic systems. For clarity, coexistence curves are shown
only for A = 1, 0.75, 0.50, and 0.25. The corresponding
critical temperatures and critical densities are reported in
Table I, together with the sizes of the simulation boxes
employed in our work. As the size disparity between
positive and negative ions increases, both T and p de-
crease. These effects become increasingly pronounced as
A becomes smaller. In the near-symmetric region (e.g.,
A = 0.75), the effect of A is small. In fact, the binodals
for A = 1 and A = 0.75 are nearly identical. In contrast,
in the highly asymmetric region, the effect of A is much
stronger.

These marked decreasing trends of 7> and p with size
asymmetry are in conflict with the predictions of integral
equation calculations using the mean spherical approxi-
mation (MSA). Figure 2 shows MSA results generated
by both the virial and the energy routes [9]. As expected
from a mean-field calculation, the MSA critical-point pre-
dictions are not quantitative. What is perhaps more sur-
prising, is that the trends observed in the simulations and
the theory are not the same; MSA predicts that both the
critical temperature and density increase as A decreases.
One possible reason for this conflict is that the MSA
theory does not satisfy the Debye-Hiickel limiting law.
A recent binding mean spherical approximation (BIMSA)
theory [16], which takes three-body hard-core exclusion
into account, does satisfy this limiting law, and might
prove to be consistent with our simulation data. Unfortu-
nately, theoretical critical predictions using BIMSA are not
available.
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FIG. 1. Simulated binodal curves for size-asymmetric electro-
lyte systems with different A. Circles: A = 1; diamonds: A =
0.75; squares: A = 0.5; triangles: A = 0.25.

TABLE I. Effect of A on apparent critical parameters for size-
asymmetric electrolytes.
A L ; .

1 17 0.0492(2) 0.073(2)
0.75 17 0.0488(2) 0.072(2)
0.50 18 0.0475(3) 0.070(2)
0.25 18 0.0422(3) 0.059(3)
0.20 20 0.0386(4) 0.051(3)
0.10 22 0.0297(5) 0.033(4)
0.05 28 0.0263(6) 0.022(3)

Previous authors, most notably Caillol and Weis [17],
have described the formation of ionic clusters in the RPM.
Furthermore, the concentration fluctuations that arise near
a critical point are likely to give rise to the formation of
clusters in the critical region of ionic fluids. It turns out
that asymmetric systems exhibit a much more pronounced
tendency to form clusters than symmetric systems. Ions
segregate into polymerlike clusters. The shapes observed
in our simulations include chains, rings, and branched
chains. In fact, at higher densities, these clusters even-
tually merge into a networklike structure that percolates
throughout the whole system. To explain these shapes,
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FIG. 2. Critical parameters for size-asymmetric PM elec-
trolytes. (a) Critical temperature as a function of asymmetry.
Circles correspond to results of simulations; squares are MSA
results via the energy route, and diamonds are MSA results via
the viral route. (b) Critical density as a function of asymmetry.
The meaning of the symbols is the same as in (a).
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it is instructive to consider a simple cluster of only four
ions. For a symmetric electrolyte the potential energy of a
tight four-ion cluster is lower than that of a linear tetramer.
For highly asymmetric systems (e.g., A < 0.12), however,
linear tetramers have lower potential energy than any other
cluster shape. This lower energy, plus a higher entropy,
help explain why chains and large rings occur. It is also
interesting to point out that, for A > 0.4, the energy of lin-
ear tetramers or clusters is independent of A. For A < 0.4,
however, the energy of clusters increases markedly as A
decreases, while that of linear tetramers remains un-
changed. Interestingly, A = 0.4 is also the point at which
the critical temperature and density appear to take a sharp
turn towards smaller values.

To quantify the formation of clusters, we follow Gillan’s
definition [18], i.e., an ion belongs to a cluster if the small-
est distance between the ion and the other members of
the cluster is less than some critical distance R.. Three
critical distances are defined in this work; more specifi-
cally, for particle pair ij the critical distance is chosen
as R;j. = 1.50y;. Figure 3 shows the fraction of ions
involved in clusters of a given size n, for A = 0.05, at
T = 0.0289 and (p*) = 0.0016. We find that most clus-
ters are neutral, and the probability of finding ions in
even-sized clusters is much larger than in odd-sized clus-
ters. Most of the clusters are chainlike structures. The
largest clusters encountered in this case have more than
100 ions. In contrast, at approximately the same density,
most of the ions in RPM systems form simple dimers. This
strong proclivity of asymmetric systems to associate may
play an important role in the properties of electrolytes so-
Iutions, and is likely to have important consequences in
the development of models for polyelectrolyte solutions,
where, in the interest of simplicity, counterions have often
been assumed to have the same size as charged polymer
segments.
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FIG. 3. Probability of finding an ion involved in a cluster of

size n at T* = 0.0289 and p* = 0.0016 for a A = 0.05 system
of size L* = 76.
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The depression of the critical point, or the smaller region
of coexistence observed for highly asymmetric systems,
can be attributed to the formation of large clusters. In the
fluid phase (above the critical point), these large structures
would have a tendency to stabilize the system by leading
to considerably lower chemical potentials than a system
of simple dimers, thereby preventing the onset of a phase
separation.

The formation of large clusters in highly asymmetric
electrolytes suggests that finite-size effects, analogous to
those encountered in simulations of polymers, are likely to
be large. These effects have been considered in detail in
our calculations, where we have conducted a considerable
number of simulations in boxes of different sizes, some as
large as L* = 90. While we have verified that our sys-
tems and calculations are large enough not to be adversely
affected by finite-size effects, it is important to empha-
size that, at low temperatures and concentrations (i.e., for
highly asymmetric systems), finite-size effects become in-
creasingly pronounced. It would therefore be difficult to
conduct simulations of coexistence below the range of A
considered in this work (that is A << 0.05). Also note that,
to the best of our knowledge, the simulations reported here
have been conducted on systems larger than those consid-
ered by previous simulation studies [7,8,17,19].

Financial support from the National Science Foundation
(CTS9901430) is gratefully acknowledged.

Note added.—Romero-Enrique et al. [20] recently
completed a study of coexistence for size-asymmetric
primitive electrolytes. The results presented in that work
are consistent with those presented here. We are grateful
to Professor Fisher and Professor Panagiotopoulos for
providing us with a preprint of that work.
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