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Relativistic Symmetry Suppresses Quark Spin-Orbit Splitting
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Experimental data indicate small spin-orbit splittings in hadrons. For heavy-light mesons we identify
a relativistic symmetry that suppresses these splittings. We suggest an experimental test in electron-
positron annihilation. Furthermore, we argue that the dynamics necessary for this symmetry are possible
in QCD.
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I. Introduction.—Recently, Isgur [1] has reemphasized
the experimental fact that spin-orbit splittings in meson
and baryon systems, which might be expected to originate
from one-gluon-exchange (OGE) effects between quarks,
are absent from the observed spectrum. He conjectures
that this is due to a fairly precise, but accidental, cancella-
tion between OGE and Thomas precession effects, each of
which has “splittings of hundreds of MeV” [1]. Taking the
point of view that precise cancellations reflect symmetries
rather than accidents, we have examined what dynamical
requirements would lead to such a result. One of us re-
cently observed [2] that a relativistic symmetry is the origin
of pseudospin degeneracies first observed in nuclei more
than thirty years ago [3,4]. We find that a close relative
of that dynamics can account for the spin degeneracies ob-
served in hadrons composed of one light quark (antiquark)
and one heavy antiquark (quark).

Below, we first elucidate the experimental evidence for
small spin-orbit splittings. Then we identify the symmetry
involved in terms of potentials in the Dirac Hamiltonian for
heavy-light quark systems and note the relation to the sym-
metry for pseudospin. We show that the former symmetry
predicts that the Dirac momentum space wave functions
will be identical for the two states in the doublet, leading
to a proposed experimental test. Finally, we argue that the
required relation between the potentials may be plausible
from known features of QCD.

II. Experimental and lattice QCD spectrum.— In the
limit where the heavy (anti)quark is infinitely heavy, the
angular momentum of the light degrees of freedom, j, is
separately conserved [5]. The states can be labeled by
lj , where l is the orbital angular momentum of the light
degrees of freedom. In nonrelativistic models of conven-
tional mesons the splitting between ll1�1�2� and ll2�1�2� lev-
els, e.g., the p3�2 and p1�2 or d5�2 and d3�2 levels, can only
arise from spin-orbit interactions [1]. The p1�2 level corre-
sponds to two degenerate broad states with different total
angular momenta J � j 6 sQ (here j �

1
2 ), where sQ is

the spin of the heavy (anti)quark [5]. For example, in the
case of D mesons, sQ �

1
2 and the two states are called

D�
0 and D0

1. There are also two degenerate narrow p3�2
states D1 and D�

2 [5]. The degenerate states separate as
one moves slightly away from the heavy quark limit, and
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their spin-averaged mass remains approximately equal to
the mass before separation.

For the D mesons, the CLEO Collaboration claims a
broad JP � 11 state at 2461141

234 6 10 6 32 MeV [6], be-
longing to the p1�2 level, in close vicinity to the D�

2
at 2459 6 2 MeV [7], belonging to the p3�2 level, indicat-
ing a remarkable p3�2-p1�2 spin-orbit degeneracy of 22 6

50 MeV. It is appropriate to extract the spin-orbit splitting
this way since first, the charm quark behaves like a heavy
quark. Second, the difference between the D0

1 and D�
2 lev-

els is the best indicator [8] of the p3�2-p1�2 splitting in the
absence of experimental data [9] on the D�

0 , as opposed
to the difference between the D0

1 and spin-averaged p3�2
level at 2446 6 2 MeV. Spin-averaged masses are deter-
mined from experiment [7].

For the K mesons, the p1�2 level is at 1409 6 5 MeV,
with p3�2 nearby at 1371 6 3 MeV, corresponding to
a p3�2-p1�2 splitting of 238 6 6 MeV. The splitting
between the higher lying d5�2 and d3�2 levels is 24 6

14 MeV or 41 6 13 MeV, depending on how the states
are paired into doublets. These results indicate a near
spin-orbit degeneracy if the strange quark can be treated
as heavy, although it has certainly not been established
that such a treatment is valid.

For B mesons, both L3 [8] and OPAL [10] have
performed analyses, using input from theoretical models
and heavy quark effective theory, to determine that the
p3�2-p1�2 splitting is 97 6 11 MeV (L3) or 2109 6

14 MeV (OPAL). Note that these are not model-
independent experimental results. In the same analyses
the mass difference between B�

2 and B�
0, an approximate

indicator of the p3�2-p1�2 splitting, is 110 6 11 MeV
(L3) or 289 6 14 MeV (OPAL). The L3 result agrees
with lattice QCD estimates of 15519

213 6 32 MeV [11]
and 183 6 34 MeV [12]. However, according to other
estimates [13], the splitting is less than 100 MeV, and con-
sistent with zero. Recently, 31 6 18 MeV was calculated
[14]. One lattice QCD study found evidence for a change
of sign in the splitting somewhere between the charm and
bottom quark masses, albeit with large error bars [15]. A
splitting of 40 MeV serves as a typical example of model
predictions [16], although there is variation summarized
in Ref. [14].
© 2001 The American Physical Society
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In order to more quantitatively measure the spin-orbit
splitting, define

r �
� p3�2 2 p1�2�

��4p3�2 1 2p1�2��6 2 s1�2�
, (1)

where all entries refer to masses. The experimental data
on D, K , and B mesons give, respectively, r � 0.00 6

0.10, 20.06 6 0.00 and 0.23 6 0.04 (L3) or 20.23 6

0.03 (OPAL). For the Dirac equation with arbitrary vector
and scalar Coulomb potentials, the only cases for which the
relevant analytic solutions are known, 20.7 & r & 0.6. It
is hence evident that the spin-orbit splittings extracted from
experimental results are indeed small.

There is also evidence in light quark mesons and bary-
onic systems that the spin-orbit interaction is small [1].
In nonrelativistic models, meson and “two-body” baryon
spin-orbit interactions are related and, for a specific class
of baryons, the spin-orbit interaction is small for exactly
the same reasons that it is small in mesons [1].

III. A dynamical symmetry for the Dirac Hamilto-
nian.— If we consider a system of a (sufficiently) heavy
antiquark (quark) and light quark (antiquark), the dy-
namics may well be represented by the motion of the
light quark (antiquark) in a fixed potential provided by
the heavy antiquark (quark). Let us assume that both
vector and scalar potentials are present. Then the Dirac
Hamiltonian describing the motion of the light quark is

H � �a ? �p 1 b�m 1 VS� 1 VV 1 M , (2)

where we have set h̄ � c � 1, �a, b are the usual Dirac
matrices, �p is the three momentum, m is the mass of the
light quark, and M is the mass of the heavy quark.

This one quark Dirac Hamiltonian follows from the
two-body Bethe-Salpeter equation in the equal time ap-
proximation, the spectator (Gross) equation with a simple
kernel, and a two quark Dirac equation, in the limit that
M is large [17–19]. If the vector potential, VV ��r�, is equal
to the scalar potential plus a constant potential, U, which
is independent of the spatial location of the light quark
relative to the heavy one, i.e., VV ��r� � VS��r� 1 U, then
the Dirac Hamiltonian is invariant under a spin symmetry
[20,21], �H, Ŝi� � 0, where the generators of that symme-
try are given by

Ŝi �

µ
ŝi 0
0 ˆ̃si

∂
, (3)

where ŝi � si�2 are the usual spin generators, si the
Pauli matrices, and ˆ̃si � UpŝiUp with Up �

�s? �p
p . Thus

Dirac eigenstates can be labeled by the orientation of the
spin, even though the system may be highly relativistic,
and the eigenstates with different spin orientation will be
degenerate.

For spherically symmetric potentials, VV ��r� � VV �r�,
VS��r� � VS�r�, the Dirac Hamiltonian has an additional
invariant algebra, namely, the orbital angular momentum,
L̂i �

µ
�̂i 0

0 ˆ̃�i

∂
, (4)

where ˆ̃�i � Up �̂iUp and �̂i � ��r 3 �p�i . This means that
the Dirac eigenstates can be labeled with orbital angular
momentum as well as spin, and the states with the same
orbital angular momentum will be degenerate. Thus, for
example, the nrp1�2 and nrp3�2 states will be degenerate,
where nr is the radial quantum number.

Thus, we have identified a symmetry in the heavy-light
quark system which produces spin-orbit degeneracies in-
dependent of the details of the potential. If this potential
is strong, the heavy-light quark system will be very rela-
tivistic; that is, the lower component for the light quark
will be comparable in magnitude to the upper component
of the light quark. It is remarkable that nonrelativistic be-
havior of energy levels can arise for such fully relativistic
systems.

This symmetry is similar to the relativistic symmetry
[2] identified as being responsible for pseudospin de-
generacies observed in nuclei [3,4]. In contrast to spin
symmetry, pseudospin symmetry has the pairs of states
�nrs1�2, �nr 2 1�d3�2�, �nrp3�2, �nr 2 1�f5�2�, etc. degen-
erate, making the origin of this symmetry less transparent.
The pseudospin generators are

ˆ̃Si �

µ ˆ̃si 0
0 ŝi

∂
. (5)

For pseudospin symmetry, the nuclear mean scalar and
vector potential must be equal in magnitude and opposite
in sign, up to a constant, VV � 2VS 1 U. Relativistic
mean field representations of the nuclear potential do have
this property; that is, VS � 2VV [22,23]. We will return
later to the question of whether the relation VV � VS 1 U
arises in QCD.

It has previously been observed that pseudospin sym-
metry improves with increasing energy of the states, for
various potentials [2]. A similar behavior may be expected
for spin symmetry, consistent with the experimental obser-
vations that spin-orbit splittings decrease for higher mass
states [1,7].

The Dirac Hamiltonian (2) encompasses the effects of
the OGE and Thomas precession spin-dependent terms
customarily included in nonrelativistic models [1].

IV. Experimental test.— In the spin symmetry limit, the
radial wave functions of the upper components of the Dirac
wave function of the two states in the spin doublet will
be identical, behaving “nonrelativistically,” whereas the
lower components will have different radial wave func-
tions. This follows from the form of the spin generators
given in Eq. (3). The (1, 1) entry of the operator matrix is
simply the nonrelativistic spin operator which relates the
upper component of the Dirac wave function of one state
in the doublet to the upper component of the other state in
the doublet. Since this operator does not affect the radial
wave function, the two radial wave functions must be the
same. By contrast, the lower component wave function is
205
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operated on by Up which does operate on the radial wave
function because of the momentum operator.

As an example, we consider D mesons, for which we de-
termine scalar and vector potentials by matching the avail-
able spectral data, assuming a p3�2 2 p1�2 splitting at the
lower end of the range defined by the experimental value of
22 6 50 MeV. This maximizes the wave function differ-
ences. In this realistic case, VV � VS 1 U, so the radial
wave functions for the upper components are not exactly
identical but are very close, whereas the radial wave func-
tions for the lower components are very different, as seen
in Fig. 1(a).

The momentum space wave functions for the upper com-
ponents will also be very similar, again because the spin
operator does not affect the wave function. However, since
Up depends only on the angular part of the momentum,

p̂ �
�p
p , it does not affect the radial momentum space

wave function. In Fig. 1(b) we see that the radial mo-
mentum space wave functions are indeed very similar for
the lower components as well. [The differences of the ra-
dial wave function upper components in both coordinate

FIG. 1. (a) The square of the Dirac radial wave function of the
lower component times r2. (b) The square of the Dirac momen-
tum space wave function of the lower component times q2. p3�2
is the solid line and p1�2 is the dashed line. The wave func-
tions are solutions of the Dirac equation [see Eq. (2)] with
Coulomb potentials VS�r� �

aS

r 1 US and VV �r� �
aV

r 1 UV ,
where aS � 21.279, US � 506 MeV, aV � 20.779, UV �
515 MeV, m � 330 MeV, and M � 1480 MeV. This corre-
sponds to a p3�2 2 p1�2 splitting of 252 MeV.
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and momentum space are comparable to the differences
shown in Fig. 1(b).] This prediction of the symmetry can
be tested in the following experiment.

The annihilation e1e2 ! D�
0D�

0 , D�
0D�

2 , and D�
2D�

2 al-
lows for the extraction of the D�

0 and D�
2 electromagnetic

static form factors and the D�
0 to D�

2 electromagnetic transi-
tion form factor. The photon interaction ensures that all ra-
dial wave functions of the light quark are accessed. When
spin symmetry is realized, there are only two independent
radial momentum space wave functions, which should en-
able the prediction of one of the three form factors in terms
of the other two. This should enable the verification of
the predictions of spin symmetry. On the other hand, non-
relativistic models, with no lower components for the wave
functions, have only one independent radial wave function,
which will lead to the prediction of two of the form factors
in terms of the remaining one. This might be too re-
strictive. The proposed experiment can be carried out at
the Beijing Electron Positron Collider at an energy of ap-
proximately 1 GeV above the c�4040� peak in the final
state DDpp .

An equivalent experiment for K mesons would involve
detection of the KKpp final state, which has already been
measured [24]. The wave functions of K mesons fitting
the experimental spectrum show similar behavior to the D
mesons, with the p3�2 and p1�2 wave functions even more
similar than those in Fig. 1(b).

If B mesons do also exhibit spin symmetry, one can
do equivalent experiments around 1 GeV above the Y�3S�
peak at the SLAC, KEK, or CESR B factories.

V. QCD origins.— If such a dynamical symmetry can
explain the suppression of spin-orbit splitting in the hadron
spectrum, the question remains as to why it might be ex-
pected to appear in QCD. To address this, we first recall the
ongoing argument as to whether confinement corresponds
to a vector or scalar potential [25]. The first natural expec-
tation was that confinement reflected the infrared growth of
the QCD coupling constant, enhancing the color-Coulomb
interaction at large distances; e.g., Ref. [26]. An involved
two- (or multi) gluon effect has been proposed [27] to ac-
count for the origin of a scalar confining potential.

The existence of one or the other of these vector and
scalar potentials is not necessarily exclusionary — they
may both be realized. The arguments in Ref. [28] suggest
further that they are related, with the scalar exceeding
the vector by an amount which may be approximately
constant as one saturates into the linear confining region
at large separations. The ratio of the slopes of the two po-
tentials in their common linear (confining) region is given
by the square of the ratio of the QCD scale for growth
of the coupling constant to the value of the mass gap of
the condensate formation. This ratio may be expected to
be of order one as both quantities are determined by the
underlying QCD scale.

If the two potentials have similar slopes in the region
outside that dominated by the color-Coulomb interaction,
they would necessarily differ only by an approximately
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constant value in that region. Thus, the origin of the dy-
namical symmetry may not be unreasonable, and may in-
deed be a natural outcome of nonperturbative QCD.

On the other hand, identically equal vector and scalar
potentials, except for a constant difference, would appear
to be coincidental. An ameliorating effect is that to pro-
duce an approximation to the spin symmetry of Eq. (2),
this condition need only hold in regions where the wave
functions are substantial.

The determination of QCD potentials, from models like
the minimal area law, stochastic vacuum model, or dual
QCD, and from lattice QCD, is hampered by the problem
of rigorously defining the concept of a potential from QCD
when one quark is light. It suffices to say that there is no
agreement on the mixed Lorentz character of the potential
even between two heavy quarks [29], where the potential
can be rigorously defined, although lattice QCD results are
consistent with simply a vector Coulomb and scalar linear
potential [30].

VI. Summary.—The observation of “accidental” spin-
orbit degeneracies observed in heavy-light quark mesons
can be explained by a relativistic symmetry of the Dirac
Hamiltonian which occurs when the vector and scalar po-
tentials exerted on the light quark by the heavy antiquark
differ approximately by a constant, VV � VS 1 U. Con-
versely, if future experiments determine that spin-orbit
splittings are small not only for the lowest excited states
in mesons but are small throughout the meson spectrum,
this experimental fact dictates that the effective QCD vec-
tor and scalar potentials between a quark and antiquark
are approximately equal up to a constant, which would
be a significant observation about the nature of nonper-
turbative QCD. Furthermore, the approximate symmetry
predicts that the spatial Dirac wave function for the spin
doublets will be approximately equal in momentum space,
a feature which can be tested in electron-positron annihi-
lation. We have argued that VV � VS 1 U may occur in
QCD, particularly for regions of space dominated by the
light quark wave function. Work is in progress to extend
this symmetry to purely light quark systems.
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