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We study the dynamics of holes and defects in the 1D complex Ginzburg-Landau equation in ordered
and chaotic cases. Ordered hole-defect dynamics occurs when an unstable hole invades a plane wave state
and periodically nucleates defects from which new holes are born. The results of a detailed numerical
study of these periodic states are incorporated into a simple analytic description of isolated “edge” holes.
Extending this description, we obtain a minimal model for general hole-defect dynamics. We show
that interactions between the holes and a self-disordered background are essential for the occurrence of
spatiotemporal chaos in hole-defect states.
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The formation of local structures and the occurrence
of spatiotemporal chaos are the most striking features of
pattern forming systems. The complex Ginzburg-Landau
equation (CGLE)

At � A 1 �1 1 ic1�=2A 2 �1 2 ic3� jAj2A (1)

provides a particularly rich example of these phenomena.
The CGLE describes pattern formation near a Hopf bi-
furcation and has become a paradigmatic model for the
study of spatiotemporal chaos [1–7]. Defects occur when
A goes through zero and the complex phase c :� arg�A� is
no longer defined. In two and higher dimensions, such de-
fects can disappear only via collisions with other defects,
and act as long-living seeds for local structures like spirals
[3] and scroll waves [4] whose instabilities lead to various
chaotic states [3,4]. For the 1D CGLE, however, defects
occur only at isolated points in space-time (see Fig. 1) and
intricate dynamics of defects and local hole structures oc-
curs, especially in the so-called intermittent and bichaotic
regimes [5]. The holes are characterized by a local con-
centration of phase gradient q :� ≠xc and a depression of
jAj (hence the name “hole”), and dynamically connect the
defects (Fig. 1). We divide these holes into two categories:
coherent and incoherent structures.

Coherent structures.—By this we mean uniformly
propagating structures of the form A�x, t� � e2ivt 3

Ā�x 2 yt� [8]. Recently, hole solutions of this form called
homoclinic holes were obtained [6]. Asymptotically, ho-
moclinic holes connect identical plane waves where
A � ei�qexx2vt�. With c1, c3, and qex fixed, unique left
moving and unique right moving coherent holes are found.
Left (right) moving holes with qex � Q (qex � 2Q) are
related by the left-right q $ 2q symmetry of the CGLE.
Coherent holes have one unstable core mode [6].

Incoherent structures.— In full dynamic states of the
CGLE, one does not observe the unstable coherent homo-
clinic holes, unless one fine tunes the initial conditions (see
0031-9007�01�86(10)�2018(4)$15.00
Fig. 2d). Instead evolving incoherent holes that can grow
out to defects occur (Figs. 1 and 2b).

In this Letter we study the hole ! defect and
defect ! holes dynamical processes of the 1D CGLE [9].
We present a minimal model for hole-defect dynamics
that describes the full “interior” spatiotemporal chaotic
states of Fig. 1a, where holes propagate into a self-
disordered background. Similar “self-replicating” patterns
are observed in many other situations, e.g., reaction-
diffusion models [10], film-drag [11], eutectic growth
[12], forced CGLE [13], and space-time intermittency
models [14].

Hole ! defect.— Let us consider the short-time evolu-
tion of an isolated hole propagating into a plane wave state.
Holes can be seeded from initial conditions like

A � exp�i�qexx 1 �p�2� tanh�gx��� . (2)

The precise form of the initial condition is not important
here as long as we have a one-parameter family of localized
phase-gradient peaks. This is because the left moving and
right moving coherent holes for fixed c1, c3, and qex are

FIG. 1. (a) A space-time grey-scale plot of jAj (dark: A 	 0),
showing the propagation of incoherent holes into a plane wave
state. The dark dots correspond to defects. Note the roughly
constant velocities at which the holes propagate. Parameter
values are c1 � 0.6, c3 � 1.4, with an initial condition given
by Eq. (2), with g � 1, qex � 20.03. This nonzero qex breaks
the left-right symmetry and results in the differing periods of
the left and right moving edge holes. (b),(c) Close-up of jAj
(b) and the complex phase c (c).
© 2001 The American Physical Society



VOLUME 86, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 5 MARCH 2001

2019
(a) Defects

Decay

(b)

(d)

(c)

W

W
W

W
u

u
ns

ns

Γ

-10 25 60
-0.5

0.5

1.5 (b)

q

x

-10 25 60
-0.5

0.5

1.5 (c)

q

x -10 25 60
-0.5

0.5

1.5 (d)

q

x

FIG. 2. (a) Schematic representation of the phase space of
the CGLE around the homoclinic hole solution, showing the
1D unstable manifold Wu, the high dimensional neutral/stable
manifold Wns that separates decaying from defect forming states,
and the manifold G representing the family of peaked initial
conditions of the form (2). (b)–(d) Four snapshots �Dt � 10�
of the q profile of a right moving hole where qex � 0, c1 � 0.6,
and c3 � 1.4. The peaked initial condition is given by Eq. (2):
(b) a hole evolving to a defect �g � 0.568�, (c) a decaying hole
�g � 0.5�, and (d) a hole evolving close to a coherent structure
�g � 0.5545�.

each unique and have one unstable mode only. As g is
varied three possibilities can arise for the time evolution of
the initial peak: evolution towards a defect (as in Fig. 1a),
decay, or evolution arbitrary close to a coherent homoclinic
hole (see Fig. 2).

The hole propagation velocities are much larger than the
typical group velocities in the plane wave states: the holes
are thus sensitive only to the leading wave. Their internal,
slow dynamics determines their trailing wave. A (nearly)
coherent hole will, due to phase conservation, have a trail-
ing wave (nearly) identical to the leading wave (Fig. 2),
hence the relevance of the homoclinic holes.

Defect ! holes.—What dynamics occurs after a defect
has been formed? A study of the spatial defect profiles
reveals that they consist of a negative and a positive phase-
gradient peak in close proximity (the early stage of the
formation of these two peaks can be seen in Fig. 2b; see
also Fig. 4d of [6]). The negative (positive) phase-gradient
peak generates a left (right) moving hole. The lifetimes of
these holes depend on their parent defect profile (analogous
to what we described in Fig. 2) and also on c1, c3, and
qex. Hence the defects act as seeds for the generation of
daughter holes (see also Fig. 1).

Periodic hole-defect states.—When an incoherent hole
invades a plane wave state and generates defects, stable
periodic hole ! defect ! hole behavior can set in at the
edges of the resulting pattern [15] (Fig. 1a). The asymp-
totic period t of this process depends on c1, c3, respec-
tively, the propagation direction and the wave number qex
of the initial condition only; we focus here on right mov-
ing holes. The period t diverges at a well-defined value of
qex � qcoh (Fig. 3a). This can be understood in the phase
space picture presented in Fig. 2. Suppose we fix c1 and
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FIG. 3. (a) Log-linear plot of the period t as a function of
qex 2 qcoh, (b) 100�qm as a function of the time Dt before the
formation of a defect, and (c) �qm as a function of qm.

c3. The edge defects that are generated periodically yield
constant initial conditions for their daughter edge holes,
similar to fixing g in Eq. (2). The period t will depend on
the location of the defect profile with respect to the stable
manifold of the coherent hole. When qex is varied, both
this manifold and the defect profile may change, and for a
certain value of qex which we call qcoh, the defect gener-
ates an initial condition precisely on the stable manifold of
the coherent hole. The lifetime of the resulting daughter
hole then diverges (see Fig. 2d).

To substantiate this intuitive picture, we have performed
numerics on the dynamics of “edge holes” invading a plane
wave state where A � ei�qexx2vt�. We have performed
runs for many different parameters but will discuss only
a representative subset here. Our results indicate that the
t divergence is of the form

t � 2s ln�qex 2 qcoh� 1 t0 . (3)

This equation, and, in particular, the value of s, can be
understood by considering the flow near the saddle point
shown in Fig 2a. Just after the hole has been formed, it
first evolves rapidly along the stable manifold. Second, it
evolves slowly along the unstable manifold before being
shot away towards the next defect. For values of qex close
to qcoh, the holes approach the coherent structure fixed
point very closely, and t will be dominated by a regime of
exponential growth close to this fixed point. Small changes
in qex will have a negligible effect on the duration of the
first phase (t0), but the duration of the second phase will
diverge logarithmically as 2�1�l� ln�qex 2 qcoh�. Here
l, which depends on c1 and c3, denotes the unstable
eigenvalue of the coherent structures at qex � qcoh. In
Table I we list some numerically determined values for
qcoh, 1�l, and s. We obtained s and qcoh from a fit of
t to Eq. (3), whereas l is obtained from a shooting algo-
rithm; see Ref. [6]. The agreement between s and 1�l is
quite satisfactory.

TABLE I. Comparison of 1�l with s (see text for details).

c1 c3 qcoh 1�l s

0.6 1.4 20.0362 8.42 8.4
0.8 1.4 20.0727 9.91 9.5
0.6 1.2 20.0538 12.72 12.7
1.0 1.2 20.0200 17.71 18.7
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We now construct a phenomenological model for iso-
lated incoherent holes. (i) We ignore their early time attrac-
tion to the unstable manifold and think of their location on
WU as an internal degree of freedom, parametrized by the
phase-gradient extremum qm. (ii) Clearly the model should
have an unstable fixed point for values of qm corresponding
to coherent holes. We have found that, in good approxima-
tion, coherent holes have qm � qn 1 gqex, where qn de-
notes the value of qm for a coherent hole in a qex � 0 state
and g is a negative phenomenological constant. (iii) When
approaching a defect, qm diverges as �Dt�21 [16]; we have
confirmed this by accurate numerics (Fig. 3b). An appro-
priate equation incorporating these three features is

�qm � l�qm 2 �qn 1 gqex�� 1 m�qm 2 �qn 1 gqex��2 ,
(4)

where g and m are phenomenological constants. The first
term on the right-hand side (RHS) of (4) results from the
linearization near the coherent fixed point. Nonlinear terms
of higher than quadratic order on the RHS of Eq. (4) are
ruled out by the �Dt�21 divergence of qm. Our numerical
data for �qm versus qm indeed shows quadratic behavior for
large enough values of qm (Fig. 3c). For smaller values of
qm, the curves are quite intricate; this corresponds to the
rapid early time evolution along the stable manifold not
included in model (4). From Eq. (4), it is straightforward
to show that the hole lifetime t (the time taken for qm

to diverge) displays the required logarithmic divergence as
qex is tuned towards a critical value qcoh.

Disordered dynamics.— If the patches away from the
holes/defects were simply plane waves with fixed wave
number, then one would expect, following the arguments
given above, quite regular dynamics. The coupling be-
tween holes and the background induced by phase conser-
vation becomes the key ingredient to understand disorder
in hole-defect dynamics such as shown in Fig 1a. Let us
introduce a variable f :�

R
dx q that measures the phase

difference across a certain interval.
Consider again an edge hole evolving towards a defect.

While the peak of the q profile grows, the hole creates
a dip in its wake (see Fig. 2b) in order to locally con-
serve f. Clearly the trailing edge of this incoherent hole
is not a perfect plane wave. In the interior of states such
as shown in Fig. 1a, unstable holes move back and forth
through a background of disordered qex and amplify this
disorder. Nevertheless, as we pointed out earlier, the dis-
ordering dynamics is sufficiently slow such that the holes
remain approximately homoclinic for much of their lives.
Although the typical range of values for the disordered qex
is small, the hole lifetimes depend on it sensitively. Hence
the variation in qex and f is sufficient to explain the vary-
ing lifetimes found in the interior states such as that shown
in Fig. 1a. Thus the essence of the spatiotemporal chaotic
states here lies in the propagation of unstable local struc-
tures in a self-disordered background.

Minimal model.—To illustrate our picture of self-
disordered dynamics, we now combine the various
2020
hole-defect properties with the left-right symmetry and
local phase conservation of the CGLE to form a minimal
model of hole-defect dynamics. From our previous analy-
sis, we see that the following hole-defect properties should
be incorporated: (i) Incoherent holes propagate either left
or right with essentially constant velocity (see Fig. 1a).
(ii) For fixed c1, c3, their lifetime depends on the profile
of their parent defect, the direction of propagation, and on
the wave number of the state into which they propagate.
(iii) Equation (4) captures essentially all aspects of the
evolution of their internal degree of freedom. When qm

diverges, a defect occurs.
In our model we assume that all the defects have the

same profile and so act as unique initial conditions for
their daughter incoherent holes. While in principle a de-
fect profile could depend on the entire history of the hole
which preceded it, for simplicity we have chosen to ne-
glect this. We have observed that for some regions of the
c1, c3 parameter space, the defect profiles from the interior
spatiotemporal chaotic patterns show a surprising lack of
scatter [9]. Therefore, we believe that treating the defect
profiles as constant and including only the effect of the
background in the hole dynamics incorporates the essence
of the coupling to a disordered background.

We discretize both space and time by coarse grain-
ing and take a “staggered” type of update rule which
is completely specified by the dynamics of a 2 3 2 cell
(see Fig. 4a). We put a single variable fi on each site,
corresponding to the phase difference across a cell di-
vided by 2p. Local phase conservation is implemented
by f

0
l 1 f0

r � fl 1 fr , where the primed (unprimed)
variables refer to values after (before) an update.

Holes are represented by active sites where jfj . ft;
here f plays the role of the internal degree of freedom.
Inactive sites are those with jfj , ft, and they represent

φl
/ φr

/

φl
φr

(a)
0 200 400

0

150

300

(b)

t

x

0 200 400
0

150

300

(c)

t

x 0 200 400
100

250

400

(d)

t

x

FIG. 4. (a) Grid model geometry showing the sites (dots) and
hole propagation direction (arrows). The update rule is defined
within a 2 3 2 cell. (b)–(d) Dynamical states in the grid model,
for fn � 0.6 and fad � 0.75. Initial condition: center site
has f � 0.7; everywhere else f � 0 (hence the symmetric
patterns). (b) g � 0 and fd � 1. (c) Disordered dynamics
for nonzero coupling (g � 23, fd � 1). (d) Zigzag structures
occur for g � 23, fd � 0.98.
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the background. The value of the cutoff ft is not very
important as long as it is much smaller than typical values
of f for coherent holes. Here ft is fixed at 0.15. Without
loss of generality we force holes with positive (negative)
f to propagate only from fl (fr) to f0

r (f0
l).

Depending on the two incoming states, we have the
following three possibilities:

One site active: Without loss of generality we assume
that we have a right moving hole. We implement evolution
similar to Eq. (4) but neglect the quadratic term of Eq. (4);
even though qm diverges, the local phase difference fm

does not diverge near a defect. Hence the finite time di-
vergence of the local phase gradient q that signals a defect
can be replaced by a cutoff fd for f. Therefore, when
fl , fd, the internal hole coordinate f is taken to evolve
via f0

r � fl 1 l�fl 2 fn 2 gfr�. Here l sets the time
scales and can be taken small (fixed at 0.1). This evolu-
tion equation, combined with the local phase conservation,
means that an incoherent hole propagating into a perfect
laminar state will leave a disordered state in its wake.
When fl . fd, a defect occurs and two new holes are
generated: f0

r � fad and f
0
l � fd 2 1 2 fad. The fac-

tor 21 reflects the change in winding number at a defect.
Both sites inactive: Away from the holes/defects, the

relevant dynamics is phase diffusion. This is implemented
via f0

r � Dfl 1 �1 2 D�fr . The value of D is fixed at
0.05 and is not very important.

Both sites active: This corresponds to the collision of
two oppositely moving holes. Typically this leads to the
annihilation of both holes (see Fig. 1a), which we im-
plement here via phase conservation: f0

r � f
0
l � �fl 1

fr��2.
The coupling of the holes to their background, g, should

be taken negative (although its precise value is unimpor-
tant). For g � 0 the lifetime t becomes a constant, in-
dependent of the f of the state into which the holes
propagate, and, moreover, the dynamical states are regular
Sierpinsky gaskets (Fig. 4b). Nevertheless, starting from a
f � 0 state, the local phase conservation of the hole dy-
namics leads to a background state with a disordered f

profile. For g , 0 the coupling to this background leads
to disorder as shown in Figs. 4c and 4d. This illustrates
the crucial importance of the coupling between the holes
and the self-disordered background.

The essential parameters determining the qualitative na-
ture of the overall state are fn, fd, and fad. These
parameters determine the amount of phase winding in the
core of the qex � 0 coherent holes (fn) and in the new
holes generated by defects (fad, fd 2 1 2 fad). When
varying the CGLE coefficients c1, c3, these parameters
change, too; for example, fn typically decreases when
c1 or c3 is increased. As a result, for large values of
c1 and c3, jf

0
lj and f0

r are typically larger than fn so
that most “daughter holes” will grow out to form defects
and hole-defect chaos spreads (Figs. 4c and 4d). For suffi-
ciently small values of c1 and c3, on the other hand, fn is
large and both daughter holes will decay. For intermediate
values of c1 and c3 it may occur that jf0

lj is significantly
larger than f0

r , leading to zigzag states [6] (Fig. 4d).
In conclusion, we have studied in detail the dynamics

of local structures in the 1D CGLE. We have obtained
a quantitative understanding of the edge holes, unraveled
the interplay between defects and holes, and put forward a
simple model for some of the spatiotemporal chaotic states
occurring in the CGLE.
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