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Phase Separation in a Chaotic Flow
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The phase separation between two immiscible liquids advected by a bidimensional velocity field is in-
vestigated numerically by solving the corresponding Cahn-Hilliard equation. We study how the spinodal
decomposition process depends on the presence—or absence—of Lagrangian chaos. A fully chaotic
flow, in particular, limits the growth of domains, and for unequal volume fractions of the liquids, a char-
acteristic exponential distribution of droplet sizes is obtained. The limiting domain size results from a
balance between chaotic mixing and spinodal decomposition, measured in terms of Lyapunov exponent
and diffusivity constant, respectively.
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A system of two immiscible fluids at rest will gradually
phase separate, forming domains whose size grows alge-
braically with time. Everyday experience, however, shows
that by continuously stirring or shaking the fluids the do-
mains or droplets of the phases (say, oil and vinegar) break
and coalesce, leading to a dynamic stationary state with
domains of finite size.

A first approach consists of modeling this situation by
subjecting the binary fluid to a homogeneous shear veloc-
ity field [1]. However, experiments [2], numerical simula-
tions [3], and more recently analytical approaches [4] show
that in such a situation infinitely long domains aligned
with the flow are formed. The effect of the velocity field
is to counter the Rayleigh instability, stabilizing lamellar
and (in certain cases) even cylindrical domains [5,6]. Do-
main breakup in those situations takes place only at large
Reynolds numbers, and is generally attributed to inertial
effects [1,7]. Studying these inertial effects numerically is
difficult, as a realistic description of the feedback of do-
main shape on the flow is required [7]. The corresponding
simulations are therefore limited by finite size effects.

In this Letter, we investigate a different mechanism by
which domains of finite size can be stabilized in a demix-
ing system. In particular, we show that a saturation of the
average length scale takes place even in the absence of in-
ertial effects if the flow has Lagrangian chaos (i.e., if the
trajectories of nearby starting points diverge exponentially
0031-9007�01�86(10)�2014(4)$15.00
with time). This is interesting for two reasons: First, with
an appropriate time dependence of the velocity field one
can still have Lagrangian chaos in a situation of high vis-
cosity in which inertial effects are negligible—this is how
one mixes pastes. Second, it is possible in that case to
decouple the hydrodynamic problem from the phase sepa-
ration. This problem of a passive, phase separating scalar
field is, of course, much simpler, so that simulations using
large systems are possible. Our approach therefore extends
earlier extensive studies of passive scalar advection by pe-
riodically driven chaotic flows [8].

Our study is also related in spirit to earlier studies of ad-
vection by “synthetic” velocity fields tuned to model tur-
bulent flows [9,10]. Phase separation was studied in this
context in Ref. [11]. An essential difference, compared
to our work, is that in such turbulent flows the separation
between nearby tracer particles appears to increase alge-
braically, rather than exponentially, with time.

We consider a two dimensional flow that can be tuned to
be regular, mixed, or fully chaotic. Specifically, the incom-
pressible velocity field y�x, y, t� is a modified version of
the so-called time-dependent Harper map [12] (related to
the “partitioned-pipe mixer,” a special case of “eggbeater
flow” [8]). The dynamics takes place on a square of side
L, with periodic boundary conditions. The velocity field
is an alternating sequence of shears in the x and in the y
direction with a time period T ,
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The parameter a controls the chaoticity of the trajecto-
ries. If a is small, the two semicycles are composed into
the smooth, laminar velocity field: yx � 2

paL
T sin� 2py

L �;
yy �

paL
T sin� 2px

L �. For larger values of a the trajecto-
ries stretch and fold, and the flow becomes chaotic. In
order to visualize this, it is convenient to follow the po-
sition of a point at the end of each cycle. This “kicked
Harper” map is shown in Fig. 1 for several values of a.
For a � 0.2 the flow is a mixture of laminar and chaotic
regions, and becomes fully chaotic around a � 0.4. In
© 2001 The American Physical Society
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FIG. 1. The maps obtained from snapshots at intervals T of
the lines of current with the dynamics (1), starting from various
initial conditions. Figures for a � 0.1 (top left), 0.25, 0.4, and
1.0 (bottom right).

the chaotic situation, it is convenient to characterize the
flow by the Lyapunov exponent l, defined by the fact
that nearby starting points separate as �elt . We have
computed l as in Ref. [10] and found that the relation
l � 1.96 ln�3.35a��T is a good approximation through-
out the chaotic regime, a * 0.4.

The spinodal decomposition of the two-component fluid
is described by the Cahn-Hilliard equation
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Here f is a dimensionless concentration field, the concen-
trations of the species are �1 6 f��2. We work at T � 0,
since temperature is irrelevant in this process [13]. The
free energy functional is of the Ginzburg-Landau form and
reads
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Here j is the equilibrium correlation length controlling the
width of the interfaces, and d is the number of spatial di-
mensions. We consider the following two topologically
different situations: (i) �f	 fi 0: a species is less abun-
dant than the other and forms disconnected droplets, and
(ii) �f	 � 0: the two phases are in equal quantity and form
a bicontinuous structure. Situation (i) has been studied ex-
perimentally [14].

In a chaotic flow, the passive scalar mixes rapidly,
whereas in the case of phase separation this tendency is
opposed by surface tension. The competition between
these two effects can be quantified through two adi-
mensional parameters, D 
 GT�j2 (the adimensional
transport coefficient of the Cahn-Hilliard equation) and
the chaoticity parameter a, or alternatively the adimen-
sional Lyapounov exponent lT . A large D means that
appreciable diffusive transport will take place during
each laminar half cycle. A large lT , on the other hand,
means that the mixing process is efficient within a few
cycles. Note that l can also be interpreted as an average
elongation or shear rate experienced by the fluid particles.

Equation (2) is integrated numerically with the veloc-
ity field (1), using the implicit spectral method developed
and discussed in Ref. [15]. The results are presented with
time and length units chosen as the cycle period T and the
interfacial thickness j, respectively. The system size, lat-
tice parameter, and time step are L � 512j, Dx � j, and
Dt � 5 3 1024 T, respectively.

Existence of a stationary state.—We first show that a
purely chaotic flow does, indeed, stop the domain growth.
In Fig. 2, we show the evolution of a phase-separated
sample with �f	 � 1�2, upon turning on a chaotic ve-
locity field (a � 0.4). The large droplets of the initial
configuration are broken into smaller droplets, until a sta-
tionary state where droplets successively grow and break
is reached. Figure 3 shows the late stages of coarsening
of a system with equal concentrations of phases (�f	 � 0)
in the four velocity fields of Fig. 1. For a � 0.1, the ve-
locity field is laminar. We observe in that case structures
very similar to those found in a homogeneous shear flow,
but which now follow the winding flow lines. In the mixed
case, a � 0.25, large-domain structures form in the lami-
nar regions of the flow, and break into very small domains
in the chaotic ones. In the fully chaotic situation, a * 0.4,
a dynamical stationary state is reached, with small do-
mains continuously breaking and reforming. For a �
1.0, the sinusoidal nature of the underlying velocity field

FIG. 2. Evolution of an assembly of large droplets in the
chaotic flow for times t � 0, 0.65, 1.50, and 11.8.
2015
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FIG. 3. Late stages of coarsening in the velocity fields of
Fig. 1, in the same order.

becomes apparent. This snapshot nicely illustrates the typi-
cal “stretch and fold” processes characteristic of chaotic
advection [8].

Scaling properties in the chaotic flow.— In the station-
ary regime, it is clear from Figs. 2 and 3 that there exists
a typical length scale L� which depends on the parameters
D and l: this will be confirmed below by a quantitative
analysis. As in the pure coarsening case [13], scaling prop-
erties are expected in the regime j ø L��D, l� ø L. The
length scale L� may be estimated by the following simple
argument. In the absence of flow, the domains grow as
L�t��j � �Dt�T �1�3, and this growth is stopped by the
chaotic flow which introduces a time scale l21. Hence,
we estimate L� � L�t � l21� and predict

L��D, l� � j

µ
D
lT

∂1�3

. (4)

Isolated droplets, �f	 fi 0.—Following Ref. [14], we
characterize the assembly of droplets by computing the
distribution of droplet surfaces f�S�, where f�S� dS is the
probability that the surface occupied by a droplet is be-
tween S and S 1 dS. In the scaling regime, we expect
this distribution to be of the form

f�S� �
1

S�
F

µ
S
S�

∂
, (5)

where S� is a typical droplet area. In Fig. 4, data obtained
for a wide range for the values of D and l are collapsed
by using a reduced variable S�S�, with S� � �D�l�0.62.
The data collapse is satisfactory, and the result for S�

reasonably close to what would be expected from Eq. (4),
i.e., S� � �D�l�2�3. Finding an exponent slightly smaller
than the one expected theoretically is not surprising, since
the typical domain sizes are rather small (S� & 50j2), so
that the asymptotic value for the domain growth exponent
2016
FIG. 4. Surface distribution of the droplets rescaled accord-
ing to Eq. (5), where the typical surface S� is given by S� �
�D�l�0.62. The dot-dashed line is a fit to an exponential form,
and the data are for a range a [ �0.4, 3.0� and D [ �100, 2000�.

in the absence of flow may not be reached. The rescaled
distribution functions exhibit an exponential tail, F � y� �
e2y (dot-dashed line in Fig. 4). Such distributions are very
similar to those found in the experiments of Ref. [14].
For the largest droplets, deviations from the exponential
fit are observed, indicating either insufficient statistics or a
different scaling behavior for the extreme values of S.

Equal concentrations: �f	 � 0.— In the case of equal
concentrations, the domains are ramified and extend
throughout the sample, so that the area is not a useful
measure of domain size. A characteristic domain size can
nevertheless be obtained from the two-point correlation
function C�r, t� 
 L22

R
d2x�f�x, t�f�x 1 r, t�	, which

is the Fourier transform of the structure factor measured
in light scattering experiments. Performing a time average
over many configurations shows that the bicontinuous
structure is on average perfectly isotropic, as it is in
the absence of flow. One can therefore average C�r, t�
over orientations to obtain a one variable function, C�r�.
The characteristic domain size L� can be defined by
C�L�� � 0.5. Figure 5 displays this domain size for
various combinations of D and l, as a function of the
ratio D�l. The data can be fitted by L� � j�D�lT �0.27.

FIG. 5. Log-log plot of the typical domain size L� as a func-
tion of the ratio D�l for the same values for D and a as in
Fig. 4. The full line has a slope 0.27.
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FIG. 6. Two-point correlation function C�r� at fixed a for vari-
ous mobility D, as a function of the rescaled variable r�D0.27.
Main: a � 1.0 and D � 100, 200, 400, 1000, and 2000. Inset:
a � 0.4 and D � 100, 200, and 400.

Again, this is in reasonable agreement with the scaling
analysis, Eq. (4). Larger simulations, with smaller values
of l, would be necessary to obtain larger domain sizes
and avoid the crossover effects which are well known in
spinodal decomposition simulations [13].

More detailed information on the domain structure is
obtained from the full correlation function C�r�. Here one
could expect from the scaling hypothesis a behavior of the
form

C�r� � C

µ
r

L�

∂
(6)

with C a universal function. This hypothesis is tested in
Fig. 6, where C�r� is represented for fixed l and various
values of D. At fixed l, a good collapse of the data
obtained for different D is achieved by using a rescaled
variable r�D0.27. The inset of Fig. 6, however, shows that
the shape of the scaling function slightly depends on l,
so that the universal scaling expressed by Eq. (6) is not
valid. We attribute this change of the scaling function with
the flow pattern to the fact that even in the chaotic regime
the flow cannot be considered as being homogeneous and
isotropic, but exhibits an underlying sinusoidal structure.
This is in contrast with the case of isolated droplets where
the droplet distribution was not affected by this structure;
recall Fig. 4.

We have studied the phase separation in conditions in
which the species boundaries are passively advected by an
incompressible flow. We have shown that a chaotic flow
results in a steady state with domains of finite size result-
ing from the balance between spinodal decomposition and
chaotic advection, Eq. (4). This should be contrasted with
the situation observed in turbulent flow, where the flow
intensity must exceed a threshold in order to stop domain
growth [11]. Such a difference can be traced back to the
fact that Lyapunov exponents for passive scalar advection
are actually 0 in the latter case. The essential approxi-
mation in our work, compared to realistic experimental
situations, is the assumption that the flow pattern is
not modified by the domain growth. This assumption,
however, may not be unrealistic if the two fluids have
similar viscosities and if the capillary stresses are small
compared to viscous stresses. This is measured by the
capillary number Ca � hl��g�L��, where h is the
viscosity and g the surface tension. In highly viscous
fluids, Ca is expected to be large, so that the decoupling
is possible. This decoupling also makes it possible to
consider analytical treatments.

We acknowledge useful discussions with A. J. Bray,
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