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A Convergent Series for the QED Effective Action
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The one-loop effective action of QED obtained by Heisenberg and Euler and by Schwinger has been
expressed by an asymptotic perturbative series which is divergent. In this Letter we present a nonpertur-
bative but convergent series of the effective action. With the convergent series we establish the existence
of the manifest electric-magnetic duality in the one-loop effective action of QED.
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It has been well known that Maxwell’s electrody-
namics gets a quantum correction due to the electron
loops. This quantum correction has first been studied by
Heisenberg and Euler and by Schwinger a long time
ago [1,2], and later by many others in detail [3,4]. The
physics behind the quantum correction is also very well
understood, and the various nonlinear effects arising from
0031-9007�01�86(10)�1947(4)$15.00 ©
the quantum corrections (the pair production, the vacuum
birefringence, the photon splitting, etc.) are being tested
and confirmed by experiments [5,6].

Unfortunately it is also very well known that the one-
loop effective action of QED has been expressed only by a
perturbative series which is divergent. For example, for a
uniform magnetic field B, the Euler-Heisenberg effective
action is given by [2,3]
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where m is the electron mass and Bn is the Bernoulli number. Clearly the series (1) is an asymptotic series which is
divergent [3,4]. This is not surprising. In fact, one could argue that the effective action, as a perturbative series, can be
expressed only by a divergent asymptotic series [7,8]. This suggests that only a nonperturbative series could provide a
convergent expression for the effective action. There have been many attempts to improve the convergence of the series
with a Borel-Pade resummation. Although these attempts have made remarkable progress for various purposes, they have
not produced a convergent series so far. The purpose of this Letter is to provide a nonperturbative but convergent series
of the one-loop effective action of QED. Using a nonperturbative series expansion we prove that the one-loop effective
action of QED can be expressed by
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where m is the subtraction parameter and

a �
1
2

rq
F4 1 �FF̃�2 1 F2 ,

b �
1
2

rq
F4 1 �FF̃�2 2 F2 .

Clearly the series is not perturbative, but convergent. The
series expression has a great advantage over the divergent
perturbative series. It allows us to have a massless limit.
Furthermore, it has a manifest electric-magnetic duality, as
we will discuss in the following.

For the scalar QED we also obtain a similar convergent
series for the effective action which has a smooth massless
limit and the manifest duality. Our results become impor-
tant when we evaluate the effective action of QCD.
To derive the effective action let us start from the QED
Lagrangian

L � 2
1
4

F2
mn 1 C̄�iD� 2 m�C . (3)

With a proper gauge fixing one can show that one-loop
fermion correction of the effective action is given by

DS � i ln Det�iD� 2 m� . (4)

So for an arbitrary constant background one has
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Notice that the above contour of the integral is dictated
by the causality. This integral expression, of course, has
been known for a long time [2,3]. However, as far as
we understand, the integral has been performed only in
1948
a perturbative series which is divergent (except for the
special cases of a and b) [3,9].

To obtain a convergent series of the integral we need the
following Sitaramachandrarao’s identity [10]:
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With the identity we have

DL � I1�´, m� 1 I2�´, m� 1 I3�´, m� , (7)

where ´ is the ultraviolet cutoff parameter and [11]
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So with the ultraviolet regularization by the modified mini-
mal subtraction we obtain the convergent series expression
(2), where we have neglected the (irrelevant) cosmological
constant term.

The effective action has an imaginary part when
b fi 0,
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This is because the exponential integral Ei�2z� in (2)
develops an imaginary part after the analytic continuation
from 2z to z. The important point here is that the analytic
continuation should be made in such a way to preserve the
causality, which determines the signature of the imaginary
part in (9). The physical meaning of the imaginary part
is well known [2]. The electric background generates the
pair creation, with the probability per unit volume per unit
time given by (9).

Clearly our series expression has a great advantage over
the asymptotic series. An immediate advantage is that it
naturally allows a massless limit. To see this notice that in
the massless limit we have
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so that

DL jm�0 � DL` 1 DLfin , (11)
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and
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Clearly this separation of the infrared divergence was not
possible with the old asymptotic series.

An important point here is that the logarithmic infrared
divergence in (12) disappears when (and only when) ab �
0, due to the identity

6
p

ab
X̀
n�1

1
n

∑
coth

µ
npb

a

∂
2 coth

µ
npa

b

∂∏
� a2 2 b2.

(14)

Furthermore, in this case the remaining part of (11) be-
comes finite (after the ultraviolet subtraction). Indeed,
one finds
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This shows that, when ab � 0, the effective action of QED
does not have any infrared divergence even in the massless
limit. This agrees with the known result [3,4].

A remarkable feature of our effective action is that it is
manifestly invariant under the dual transformation,

a ! 2ib, b ! ia . (17)

This tells that, as a function of z � a 1 ib, the effective
action is invariant under the reflection from z to 2z. No-
tice that, in the Lorentz frame where �E is parallel to �B, a
becomes B and b becomes E. So the duality describes
the electric-magnetic duality. To prove the duality no-
tice that the dual transformation automatically involves the
analytic continuation of the special functions ci�x�, si�x�,
and Ei�x� in (2). With the correct analytic continuation we
can establish the duality in our effective action. One might
think that the duality is obvious since it immediately fol-
lows from the integral expression (5). This is not so. In
fact, the integral expression is invariant under the four dif-
ferent transformations,

a ! 6ib, b ! 6� 7 ia . (18)

But among the four only our duality (17) survives as the
true symmetry of the effective action. So the duality con-
stitutes a nontrivial symmetry of the quantum effective ac-
tion. From the physical point of view the existence of the
duality in the effective action is perhaps not so surprising.
But the fact that this duality is borne out from our calcu-
lation of one loop effective action is really remarkable.

One can obtain the similar results for the scalar QED.
In this case the one-loop correction is given by [2,3]
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To perform the integral we introduce a new identity similar
to the Sitaramachandrarao’s identity (6)
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With this we finally obtain with the modified minimal subtraction (again neglecting the cosmological term)
1949
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The effective action develops an imaginary part,
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Observe that the effective action of the scalar QED also has the manifest duality.
The effective action of the scalar QED has a smooth massless limit. For m � 0 we have
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But remarkably the logarithmic infrared divergence disappears completely due to the following identity:

12
p

ab
X̀
n�1

�21�n

n

∑
csch

µ
npb

a

∂
2 csch

µ
npa

b

∂∏
� b2 2 a2. (26)
Furthermore, the remaining part of (24) becomes finite.
This shows that our series expression of the scalar QED
does not contain any infrared divergence in the mass-
less limit, even when ab fi 0. This is really remarkable,
which should be contrasted with the real QED which has a
genuine infrared divergence when ab fi 0.

Clearly our result should become very useful in studying
the nonlinear effects of QED. More importantly our effec-
tive action provides a new method to estimate the running
coupling constant nonperturbatively. This, and the com-
parison of our result with those of the Borel-Pade resum-
mation, will be discussed in a separate paper [12].
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