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Interface Dynamics of Lipid Membrane Spreading on Solid Surfaces
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As a model system for two-dimensional interface dynamics, we study the wetting front of a lipid
membrane moving over a solid substrate that is structured with regularly spaced pinning centers. By
analyzing the contour of the front, we derive the normal growth rate and the relaxation coefficient. Both
exhibit a 1�t1�2 time dependence. Moreover, the friction coefficient and the line tension can be deter-
mined. Randomly distributed pinning centers cause a fractal contour line, whereas on surfaces that are
artificially roughened, self-affine contour lines are observed. The latter exhibit an anomalous roughness
exponent of z � 0.81 6 0.05.

DOI: 10.1103/PhysRevLett.86.1904 PACS numbers: 87.16.Dg, 68.08.Bc, 81.15.Lm
Phospholipid membranes are a unique example of a
two-dimensional fluid. At a water-solid interface they are
capable of spreading laterally, if a lipid source provides
sufficient material. As a result, a solid surface is covered
by a continuous lipid bilayer. Such substrate-supported
membranes on planar solids are recently of great interest
for applications in biocompatible coatings and sensoric in-
terfaces [1]. In this context, the wetting behavior of lipids
on various surfaces was studied and found to be instrumen-
tal in preparing supported lipid bilayers [2]. Obviously,
substrate heterogeneities will play an important role. Pin-
ning phenomena and contact angle variations are well in-
vestigated for spreading of simple liquid droplets on rough
or structured surfaces [3]. In particular, a systematic study
of the relaxation modes of a periodically deformed liq-
uid interface on a solid was carried out by Ondarcuhu and
Veyssie [4]. In this well defined process the experimental
dispersion relation of the collective interface modes was
determined and found in good agreement with the theoreti-
cal prediction by Joanny and de Gennes [5]. On the other
hand, if liquid invades a field of random obstacles, the in-
terface line is subject to statistical fluctuations and exhibits
randomness. Nevertheless, the morphology and dynamics
of liquid driven through disordered media comprises uni-
versal properties, such as depinning, dynamic roughening,
and self-organized criticality [6,7].

In this Letter we present direct observation of lipid
flow on solid surfaces and describe the system as a two-
dimensional fluid invasion problem as schematically
shown in Fig. 1. We analyze the evolution of the advanc-
ing interface line. Using the analytic solution of the de-
terministic KPZ equation, proposed by Kardar, Parisi, and
Zhang [8], the normal growth rate, l, of the interface
height and the relaxation coefficient, n, are determined
for each row of obstacles passed by the membrane. The
long-time dynamics of the propagating membrane in-
terface exhibits a slowing down due to the increasing
transport length of material from the lipid source. Further-
more, we show that the statistical roughness of the propa-
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gating front on surfaces with quenched spatial disorder is
in agreement with models for flow in porous media.

In a typical spreading experiment, dry lipid material is
stamped from a lipid coated Teflon block onto a clean,
hydrophilic glass cover slip. The sample is dried in
vacuum for two hours and mounted in a temperature-
controlled chamber. To start the experiment, water of
40 ±C is added. Subsequently, a single lipid bilayer
begins to wet the water-solid interface as schematically
depicted in Fig. 1. The spreading is reminiscent of a
monomolecular precursor film observed in the flow of
liquid crystalline droplets at the air/solid interface [9].
However, two differences characterize the spreading of
a lipid membrane: first, it is fully immersed in water,
and second, the lipid bilayer exhibits an intrinsically
fixed molecular thickness. We use membranes consisting
of dimyristoylphosphatidylcholine (DMPC) mixed with
0.02% fluorescently labeled lipid (Texas Red-DHPE).
Fluorescent micrographs of the advancing membrane
interface were recorded with a digital CCD camera
(Micromax, Princeton Instruments). Spatial resolution
is limited by the numerical aperture of the objective
(NA � 0.75); one pixel corresponds to 0.3 mm. In order
to distort the membrane flow we designed substrates with

FIG. 1. Sketch of a phospholipid bilayer spreading on glass
substrate. The membrane is driven by VdW forces and remains
separated from the glass surface by a thin hydration layer.
© 2001 The American Physical Society
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FIG. 2. Time sequence of fluorescently labeled lipid membrane flowing through an array of hydrophobic Al2O3 barriers (position
indicated by circles). Bar � 25 mm.
arrays of 10 nm high aluminium-oxide barriers. The dots
of 7 mm diameter and 25 mm spatial periodicity were
made by a standard photolithographical lift-off method.
After removal of the photoresist, the substrate was cleaned
by an acetone rinse and subsequent UV illumination.

A sequence of fluorescence images illustrates the flow
through a line of dots, which are not wetted by the lipid
membrane (Fig. 2). The membrane fills the interstitials
and spreads from the openings between the obstacles. Cir-
cular fingers appear behind the array and grow until they
touch. At this time, the spreading front coalesces into a
continuous, but undulated interface line, which evolves
into a straight front. Two characteristics of the experi-
ment are immediately evident: (i) growth of the rim nor-
mal to the interface as manifested in the elementary flow
circles and (ii) relaxation of height fluctuations as seen in
the smoothing of the distorted interface.

The simplest growth model, which includes both char-
acteristics, is described by the well known KPZ equation.
The membrane interface height, h�x, t�, follows:
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The first term on the right-hand side describes the interface
relaxation. The second, nonlinear term is the leading term
in the gradient expansion of a constant normal growth rate
[6]. Finally, h�x, t� represents noise on the growing inter-
face. We analyze the interface relaxation in the absence
of noise (h � 0). Experimental interfaces were digitized
tracing the contour of the lipid flow field using a contour
analyzing program. The traces were interpolated by cu-
bic splines to obtain height profiles of equidistant x values.
Typical contours of the interface are shown in Fig. 3a.

The first continuous interface after coalescence of the
fingers can be used as an initial contour, h0�x�. The evolu-
tion of the interface is then calculated using the analytical
solution of the deterministic KPZ equation
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Note that the variable translation h � h 1 lt was used
to follow the advancing average height, since h shall be
the distance of the advancing front from the lipid reservoir,
such that by definition h�t � 0� � 0. Figure 3b compares
the analytic fit and the experimental contours. An average

a)

b)

1

0ln
 (

am
pl

.)

100500
t [s]

c)

FIG. 3. (a) Image processed traces of the line interfaces fol-
lowed over a period of 6 min. (b) Blowup of the grey shaded
area. The simulated curves (—) are overlaid to experimental
data (j). (c) Exponential decay of the first harmonic of the
Fourier-transformed interface line.
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over five experimental contours yields a best fit for the
relaxation coefficient. To check the robustness of the
numerical solution we also used an Euler algorithm that
directly solves the KPZ differential equation. Stable so-
lutions in agreement with Eq. (2) were found. The re-
laxation time of the distorted interface is obtained from
Fourier analysis of the contours. The first harmonic of the
traces depicted in Fig. 3a decays exponentially with relax-
ation time of about 70 sec.

The parameters l and n are assumed constant over the
relaxation period, but, in fact, decrease as the membrane
passes from one row of obstacles to another. In the
following, we determine the parameters l and n for
successive relaxation events in order to investigate their
time dependence. Figure 4 shows a t21�2 decay for l

and n. This is due to the fact that friction increases
with distance, h�t�, from the lipid source. Assuming a
linear dependence of friction with the source rim distance
fvisc � gsh�t� dh�dt, the general Washburn’s equation
�h ~ 1�h�t� is obtained [10]. Here gs denotes the drag
coefficient per unit area, which arises from different
friction mechanisms as discussed in Ref. [2]. This finding
indicates that a complete description of invasion of a regu-
lar array has to take into account the transport of material.
This needs the nonlocal constraint of mass conservation
[10]. In the following we consider the simplest case of a
straight interface. Assuming a constant free energy gain
per area, S, which is dissipated in the course of sliding, we
calculate the average interface height as a function of time
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FIG. 4. Slowing down of the growth rate l (t) and the relaxa-
tion parameter n (t) while passing several rows of obstacles.
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with a power law time dependence as measured. Note
that the slowing down of the growth rate l�t� ~ t21�2

is not caused by the array of obstacles, but rather by the
increasing frictional coupling to the substrate. The same
dependence was previously found for freely spreading lipid
membranes [2].

The relaxation coefficient, n, is related to an effec-
tive line tension, t. An elastic restoring force felastic �
t≠2h�≠2x per unit interface length arises, which is bal-
anced by local friction. Using the frictional force as above
we yield

t � gsh�t�n (5)

and consequently

n�t� � t

s
1

2Sgs
t21�2. (6)

The data shown in Fig. 4 allow one to estimate the
line tension and the friction coefficient. The spreading
power, S, of neutral membranes is dominated by van
der Waals (VdW) interactions, and hence S � 2 3

1024 J�m2. Hence, we obtain a dragging coefficient gs �
2 3 106 N s�m3 using Eq. (3) and a line tension t �
2.5 3 10212 N � 0.06kT Å21 from Eq. (5). Similar
values for line tension have been reported previously from
experiments involving pore formation of vesicles [11].

Our experiment on lipid invasion of a regularly struc-
tured surface can be extended to the study of flow in
quenched spatial disorder, if we are able to create surfaces
with a random distribution of defects. Two strategies were
followed. First, thin polystyrene films with holes are used
as masks for vapor deposition of microscopic Al2O3 obsta-
cles on glass. As shown previously by Jacobs et al. [12]
spatially uncorrelated holes are formed during the early
dewetting stage of polystyrene films on silanized SiO2
surfaces. This procedure allows us to prepare substrates
with obstacles as studied above, but with smaller and ran-
domly distributed pinning sites. Second, glass surfaces
were treated by vapor deposition of 5 Å silicon monoxide,
in order to yield rough, but chemically homogeneous sur-
faces. Figure 5 depicts different interface morphologies
obtained for a spreading lipid. On rough glass surfaces
compact lipid flow with rough but self-affine boundary
lines is observed. In contrast, membranes flowing across
a surface with randomly distributed Al2O3 dots lead to
fractal-like interface morphologies (Figs. 5b and 5c).

In case of the self-affine interfaces (Fig. 5a) the inter-
face line was digitized and the height-height correlation
function

G�x, t� � �jh�j 1 x, t� 2 h�j, t�j2�j (7)

determined. Figure 5d shows a log-log representation of
G�x� for different times. The initial slope yields scaling of
G�x, t0� ~ x2z with time independent roughness exponent,
z � 0.81 6 0.05.

These results are in good agreement with the two-
dimensional model for fluid invasion in porous media
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FIG. 5. Fluorescence micrographs of spreading fronts on sur-
faces with random distributions of defects. (a) Glass surface
roughened by vapor deposition. (b) Glass surface with a sparse
distribution of randomly distributed Al2O3 dots. (defect den-
sity c � 1021 mm22). (c) Surface as shown in (b) but with
defect density c � 1023 mm22. (d) Height-height correlation
functions of the self-affine contour shown in (a).

proposed by Martys et al. [13]. Their theory predicts
that fluid invasion of porous media with wetting obstacles
exhibits a transition from percolation to depinning, if
the contact angle u , uc � 49±. This approach yields
the same roughness exponent z � 0.81 for self-affine
interfaces in the depinning regime. Similar anomalous
roughness exponents were also found in paper imbibition
experiments [14].

We analyzed the spreading of lipid membranes on a
structured solid surfaces. The interface evolution around
defined obstacles is well described by the deterministic
KPZ equation on short time scales. On longer time scales
the KPZ theory does not account for the slowing down of
the membrane spreading rate as well as relaxation coeffi-
cient. The observed t21�2 dependence is typical for non-
local interface dynamics, where the transport of material
to the front must be taken into account [10]. However,
the phase-field model of imbibition of Dube et al., which
includes liquid conservation, does not yield the observed
roughness exponent for membrane spreading on rough sur-
faces. Here the fluid invasion model by Martys et al.
[13] seems to describe the observed anomalous kinetic
roughening best. In particular, our experiments confirm
the transition from self-similar to self-affine interfaces as
a function of wettability of the pinning obstacles. In con-
clusion, the spreading of lipid membranes presents a novel
experimental realization of �1 1 1�-dimensional growth.
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