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Recent theoretical studies and experimental demonstrations have shown the possibility of using chaos
for the encryption of message signals in communication systems. Chaos is generated by systems with
delayed nonlinear feedback, which feature hyperchaotic (i.e., of high dimensionality) dynamics. The
different ways for the injection of the information in the emitter and the process of the synchronization
of the receiver are considered. The analysis of all the possibilities can be used to choose the correct
topology of communication systems and, more generally, to explain the behavior of any chaotic systems

ruled by nonlinear difference-differential equations.
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Current methods for communicating message signals on
noiselike chaotic carriers rely on a few general approaches
[1]: the first one, applying the idea of controlled chaos,
was developed by Ott, Grebogi, and Yorke; the second one,
developed by Pecora and Carroll and later by Cuomo and
Oppenheim, is based on what has been called synchro-
nized chaos. Information is transmitted by adding a small-
amplitude message signal to a large chaotic carrier, the
latter effectively hiding the former. The message is ex-
tracted at the receiver by subtracting the chaos created in
the receiver from the transmitted chaos-plus-message sig-
nal. Most of the studies in that field were implemented
in electronics [2]. The question of synchronization of
chaos has also been studied in optics [3]. We have demon-
strated cryptographic systems, based on chaotic devices
with so-called delayed nonlinear feedback (DNLF), which
feature a high robustness of the chaos synchronization and
a very good performance in terms of stability and informa-
tion recovery [4,5].

In discussions about such systems, challenging ques-
tions are frequently asked: “Is it still possible to syn-
chronize the receiver when the amplitude of the message
signal is high?” “Is it always possible to recover directly
the message at the receiver without using some additional
processing?” This Letter is intended to address such ques-
tions in a comprehensive way.

A delay feedback system representative of those of con-
cern is shown in Fig. 1. The system consists of a source,
a nonlinear element, a detector, a first-order low-pass fil-
ter with a time constant 7, and a feedback loop with a
delay time 7. Such a scheme is general and can be used
in a number of areas in physics, electronics, mechanics,
biology, etc., to describe any chaotic systems with a non-
linear delayed feedback. The dynamical state of such a
circuit is governed by a well-known nonlinear difference-
differential equation, which takes the general form

v + 70 = BF{vG - DT, ()
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where v(r) represents the chaotic signal in the system,
F{-} is a nonlinear function featuring at least one ex-
tremum, f[-]is associated with the source, and 8 is the bi-
furcation parameter. For example, for the system [4], v(¢)
represents the chaotically oscillating wavelength A(z), F{-}
is related to the nonlinear transmission curve of the wave-
length filter formed by the birefringent crystal, f[-] is the
wavelength tuning curve of the laser diode, and S is the
gain of the photodetector. For the electronic system [5],
v(t) is the signal driving the voltage controlled oscillator,

f[-]1is its tuning curve, and F{-} is the frequency response

of a set of three oscillating circuits. In lasers, v(¢) can be
the emitted power, F{-} is related to nonlinearities in the
amplification medium, 7 is the relaxation time of atoms
or molecules, and T corresponds to the delay introduced
by multiple reflections in the cavity [3]. We now consider
the different ways in which the information signal s(#) can
be injected into the transmitter. There are five possible
points of injection, indicated in Fig. 1 by the Roman nu-
merals I-V. The addition of s(7) to the feedback loop sig-
nal at a given transmitter input point modifies Eq. (1) in
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FIG. 1. Delayed-feedback nonlinear system for generation of
chaos. Roman numerals designate points where a message signal
can be injected into the system; arabic numerals designate points
where the message-modulated chaotic signal can be tapped for
transmission to the receiver system.
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accordance with the following:

Low() 790 = BFUIvG — 1) + s @)

T) + s(t = T)]},
3)

I: v + T[CZZ—I:(I) = BF{f[v(t

nr: v() + 7 62—1; (1) = BF{flvt — D} + s(t), 4

Vw0 + 7580 = BFUTG — DI+ B0,
(&)

Vi ulr) + T‘;—’t’(t) — BF{fTv(t — T)] + s()}. (6)

It can be seen from Eqgs. (2)—(6) that, in each case, the in-
formation signal s(z) changes the dynamics of the entire
transmitter; thus the output signal represents more than
simply the superposition of a chaotic signal and the infor-
mation signal.

There are also five points in the feedback loop where the
transmitter output can be obtained. These are indicated in
Fig. 1 by Arabic numerals 1-5. The receiver consists of
elements identical to those in the transmitter, and with the
same topological layout. It is critical that the input to the
receiver — the encrypted chaotic signal from the transmit-
ter— passes through elements that are effectively identical
to those in the transmitter and that are encountered in the
same order. And the first element in the receiver must
be the same as the element placed after the output point in
the transmitter. Figure 2 illustrates the transmitter-receiver
combination for case I1/1. We consider this specific case
for illustrating the synchronization and decoding process.
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FIG. 2. Transmitter-receiver combination for case 1I/1. Mes-
sage signal s(z) is input to the transmitter loop. The output of
the receiver, A(z), equals s(+ — T) if the receiver system is ef-
fectively identical to the transmitter.

The input to the receiver shown in Fig. 2 is given by
p(t) =v(t — T) + s(t — T). The difference-differential
equation describing the chaos created in the receiver can
be written in the form

V@) + 7 (1) = BEUT — T) + st = DT,
)

where v/(¢) is the chaos produced at the input of the
time-delay element. Subtraction of Eq. (3) from Eq. (7)
yields
dv , dv’

v(t) + 7 ” () —v'(t) — 7 it (t)=10, (¥
a result that implies that v/(f) — v(¢) = 0 asymptotically
when ¢t — oo, with time response 7. We thus conclude that
the receiver synchronizes to the chaotic part of the signal
p(t) from the transmitter, independently of the message
signal s(¢) [it must be noted that Eq. (8) is obtained for
case II/1; it is not necessarily valid for the other cases].
Subtracting the chaos v'(r — T) at the receiver-output
from the receiver-input signal p(z) yields the difference
signal A(r) = p(t) — v'(t = T) = s(t — T). So, the
system under consideration gives rigorously the original
information signal s(), delayed by T. Recovery of the
original message depends neither on the parameters of the
chaotic carrier nor on the message signal. The method
succeeds even if the amplitude of the message signal s(z),
its bandwidth, or both are larger than those of the chaotic
carrier. In that latter case the information can be recovered
without any degradation. That result is the answer to the
first question asked earlier in this Letter.

The results of analysis for all possible cases are pre-
sented in Table I. The rigorous solutions A(¢) = s(r) and
A(t) = s(r — T), which yield an exact copy of the origi-
nal message signal for any source and nonlinear element,
are obtained only in seven cases, those cases that lie along
the table diagonal and cases II/1 and IV/3.

Cases III/1, IV/1, II/2, and IV/2 yield differ-
ence signals A(z) ruled by differential equations (see
Table I) whose solutions are of the form A(z) = 77! X
[s(z) * exp(—1/7)], where * denotes a convolution.
Those solutions are physically equivalent to filtering s()
by a low-pass filter with a cutoff frequency (277 7).

Cases 1/5, 1I/5, 111 /5, and IV /5 require a specific post-
processing, except if the f-function is a linear function
of the form f[v(¢)] = av(t) + w, where @ and w are
constants. Cases I/5 and II/5 yield the full synchroniza-
tion, and recovery of s(z) is exact (see Table I). We put
emphasis on that specific situation since it is usually met
experimentally in optics and electronics. Cases II1/5 and
IV/5 are physically equivalent to filtering s(¢) by a low-
pass filter.

The other ten cases do not allow the information to be
extracted directly from the transmitted signal. The expres-
sion that governs the signal A(z) at the receiver output is
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TABLE L
the various output points.

The difference signal A(z) for all possible cases of the information signal injection into the circuit and for all cases of

Input Output point
point 1 2 3 4 5
I A(t) = s(2) Processing Processing Processing At) = as(t)
I A(t) =s(t = T) A(r) = s(1) Processing Processing Alt) =as(t = T)
I Al) + 72 = st — T) A + 721 = s(0) A(f) = s(r)  Processing  A(t) + 7% (1) = a (1)
IV AW+ S0 =Bst—T) A@) + 7920 =Bst) A@)=Bskt) A@)=skt) A@) + 7%0) = Bas@)
\Y% Processing Processing Processing Processing A(r) = s(1)

given below, as an example, for case 1/3:

A(r) = BF{flv(t = T) + s} = BF{flv(t = D]},
©))

In each case, if there is no message s() at the transmitter
input [s(¢) = 0], the receiver is synchronized to the trans-
mitter. However, despite that synchronization, it is not pos-
sible to retrieve the message unless special postprocessing
is employed. As an example of such postprocessing, con-
sider case I/3 for the system [4]. The source in that system
is characterized by a linear f-function, and the nonlinearity
is given by F(A) = sin?(AA + @), where A and ®, are
parameters depending on the optical path-difference D of
the birefringent wavelength filter, and on the center wave-
length A of the laser diode (A = 7;\—12) and &y = %).
Solving Eq. (9) for that case yields the following expres-
sion for the message signal s(¢):

s(r) o« sin_l[\/ % + sin?{A[A(t — T) + Aol}

— A[A(r — T) + Ao, (10)

where A(r — T) is the oscillating part of the wavelength
of the signal generated by the laser diode in the receiver.
Note that both A(¢) and A(+ — T) are required to calculate
s(7) using this equation. That obstacle makes processing
hardly applicable in communications.

Consider now the case when the information signal is
mixed with the chaotic signal outside the transmitter, as in
the Pecora and Carroll method [1]. Analysis of the dynam-
ics of the transmitter-receiver combination (for output 1 in
Fig. 1) yields a difference signal A(z) at the receiver out-
put governed by

d[A — 5]

J’_
A(t) + 7 7

(1) = BF{f[v(t — 2T)]}
— BF{flv(r — 2T) + s(1)]}.
(11)

Recovery of the message signal s(¢) by means of Eq. (11)
is at best not straightforward, and direct access to s(r) is
clearly impossible.

To verify the conclusions presented above we conducted
experimental demonstrations, implementing the different
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configurations corresponding to Egs. (2)—(6) for the trans-
mitter along with the corresponding receiver equations.
Experimental verifications were performed using the
experimental device described earlier in this Letter [4].
Parameters of the experimental system were set as follows:
Ap = 1550 nm, D = 11 mm, T =500 us, and 7 =
9 us. The value of the normalized bifurcation parameter
B (see [4]) was equal to 22. The standard deviation of the
chaotic fluctuations of the wavelength at about 1550 nm
was 1 nm and the estimated dimension of the generated
chaotic signal was d = 500. That value was obtained us-
ing the estimation d ~ 0.4T /7 calculated for a sin’-type
nonlinearity in [6]. The information signal was a sine wave
whose amplitude could be varied and whose frequency
could be inside or outside the bandwidth of the chaos pro-
duced by the transmitter. An example of the chaotic carrier
signal generated by the transmitter is shown in Fig. 3a.
The difference signal A(z) obtained at the receiver output
was obtained experimentally for the full-synchronization
cases 1/1, 11/2, 111/3, IV/4, V/5, 11/1, and 1V/3, where
we have obtained the error-free signal extraction (example
in Fig. 3b), and for cases 1/5, II/5. We observed the low-
pass filtering effect in the cases III/1, IV/1, 1I[/2, TV/2,
III/5, and IV/5.

The specific situation where postprocessing is required
to recover the message from the difference signal A(r)
was also tested for the cases 1/2, 1/3, 1/4, 11/3, 11/4, and
II1/4 (see example 1/3 in Fig. 3¢). As a result of pro-
cessing Eq. (10) we obtained the information signal s(r)
that is shown in Fig. 3d. The experimental verification of
cases V/1, V/2, V/3, and V/4 could not be performed
with the experimental setup, but all those cases were tested
numerically using the Runge-Kutta procedure for solving
the equations corresponding to the emitter and the receiver
of the system [4]. We have investigated a wide range of
values of the message-to-chaos ratio and observed that di-
rect recovery of the message [analyzing the time series
or the spectrum of the signal A(z)] is then impossible.
The case of mixing the message signal with the chaotic
carrier outside the feedback loop also confirmed that the
chaotic dynamics of the transmitter and receiver cannot
be synchronized (Fig. 3e). The obtained experimental re-
sults agree completely with the analysis of the delayed-
differential equations (Table I) that govern such chaotic
systems. Performances in terms of signal-to-noise ratio
are given in the captions of Fig. 3.
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FIG. 3. Examples of signals produced experimentally.
(a) Composite chaotic signal generated by the transmitter (IT/1)
formed by the addition of the message s(¢) with a message-to-
chaos ratio of —20 dB; (b) the difference signal A(z) obtained
for case II/1 (signal-to-noise ratio is measured to be —30 dB);
(c) the difference signal A(r) for case I/3; (d) example of
the processing Eq. (10) for case 1/3; (e) receiver output A(z)
corresponding to Eq. (11), when the message s(¢) is mixed
with the chaotic carrier outside the transmitter with a —20 dB
message-to-chaos ratio.

Thus the synchronization process in such systems is
either fully insensitive or is highly sensitive to external
perturbations, depending on the particular system con-
figuration. In communications, all the cases yielding the
rigorous recovery of the information, including the cases
of a linear f-function, are equally acceptable for practical
applications.

To conclude, the analysis of chaos synchronization
presented in this Letter applies to any chaotic systems
ruled by difference-differential equations. Returning to the
questions raised earlier in the context of communication
systems, we thus reach the following conclusion: The syn-
chronization of DNLF systems and, hence, direct recovery
of the message without postprocessing require that the
signal input and transmitter output be assigned to suitable
points in the transmitter. The synchronization process ex-

hibited with the correct configurations is probably one of
the most remarkable features of time-delayed feedback
chaotic systems, which can produce high-dimensional
chaos. We did not discuss the problem of security of
DNLF systems (the reader is referred to [7]), reminding
one that breaking systems with strong nonlinearities, i.e.,
described by a F function with multiple extrema [4,5], is
still an open issue.
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