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Implementation of the Quantum Fourier Transform
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A quantum Fourier transform (QFT) has been implemented on a three qubit nuclear magnetic reso-
nance (NMR) quantum computer to extract the periodicity of an input state. Implementation of a QFT
provides a first step towards the realization of Shor’s factoring and other quantum algorithms. The
experimental implementation of the QFT on a periodic state is presented along with a quantitative mea-
sure of its efficiency measured through state tomography. Experimentally realizing the QFT is a clear
demonstration of the ability of NMR to control quantum systems.
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Quantum computers are devices that process informa-
tion in a way that preserves quantum coherence. Unlike
a classical bit, a quantum bit, or “qubit,” can be in a su-
perposition of 0 and 1 at once. This nonclassical feature
of quantum information allows quantum computers to per-
form certain computations faster than classical computers.
For example, quantum computers, if constructed, could
factor large numbers more rapidly [1], search databases
more quickly [2], and simulate quantum systems more ef-
ficiently [3] than is possible using current classical algo-
rithms [4–10].

A key subroutine of algorithms for factoring and simu-
lation [11–13] is the quantum Fourier transform (QFT)
[14–16]. The QFT can be used to extract periodic fea-
tures of wave functions or to switch from “position” to
“momentum” representations and is defined as follows:

QFTqjx� �
1
p

q

q21X
x0�0

e2pixx0�qjx0� . (1)

Here, q is the dimension of the system’s Hilbert space.
This paper reports the experimental demonstration of a
quantum Fourier transform using nuclear magnetic reso-
nance (NMR).

The dimension of a Hilbert space for n qubits is q �
2n. Thus, the two qubit QFT corresponds to the unitary
operator,
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The operator separates the input states by 0± in the first row
and column, and then by 90±, 180±, and 270±, multiples
of p

2 .
Equation (2) shows that the QFT, which was modeled

after the discrete Fourier transform and is itself discrete,
has effects similar to that of the classical discrete Fourier
transform. In particular, if f�x� is periodic with period r ,
then f̃�p� will exhibit a peak at p � q�r . This is the key
to Shor’s algorithm which allows a quantum computer to
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factor very large numbers in polynomial time. The classi-
cal Fourier transform reveals the periodicity in functions;
the QFT reveals periodicity of wave functions.

As formulated by Coppersmith [14], the QFT can be
constructed from two basic unitary operations, the Hj or
Hadamard gate, operating on the jth qubit

Hj �
1
p
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µ
1 1
1 21

∂
(3)

and Bjk , a conditional phase shift, operating on the jth and
kth qubits

Bjk �

0
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0 0 0 eiujk

1
CCCCA , (4)

where ujk � p�2k2j .
To implement the QFT on L qubits, this series of gates

Bj,1Bj,2, . . . , Bj,j21Hj , (5)

must be implemented on each qubit, j, as j is indexed from
1 to L. A bit reversal will then complete the QFT.

This sequence of quantum logic gates can be realized via
NMR. The idea of using nuclear spins as the basic unit of
a quantum computer was proposed by Lloyd [17], and de-
tailed schemes for using NMR as a method of quantum
computing were implemented by Cory et al. [18], Ger-
shenfeld and Chuang [19], and Jones [20]. In NMR a
series of radio frequency pulses are used to control the
excess magnetization of an ensemble of quantum states.
In addition, a bilinear coupling term in the Hamiltonian
allows for conditional phases to be achieved and thus the
preparation of entangled states.

The internal Hamiltonian of a 3 qubit (spin) system with
only weak coupling is

H �
v1I1

z 1 v2I2
z 1 v3I3

z 1

2p�J12I1
z I2

z 1 J13I1
z I3

z 1 J23I2
z I3

z � , (6)

where Ii � si�2 are rescaled Pauli matrices. The three
bit, q � 8, QFT was implemented via NMR using the
three carbon-13 spins of an alanine sample. The resonant
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frequency of carbon-13 on a 300 MHz spectrometer is ap-
proximately 75.468 MHz. Frequency differences between
the spins are 9456.5 Hz between spins 1 and 2, 2594.3 Hz
between spins 2 and 3, and 12 050.8 Hz between spins 1
and 3. Coupling constants between the three spins are
J12 � 54.1, J23 � 35.0, and J13 � 21.3. Relaxation time
T1 for the three carbon spins in alanine are all longer than
1.5 s while the T2 relaxation times are longer than 400 ms.

The pulse program is conveniently derived from
an idempotent or projection operator description of
the propagators. The operators E6 are defined as
�1 6 sz��2. The Hj matrix can be broken down into
E1 2 E2 1 sx�E1 1 E2�. The pulse sequence [21] of
the Hj gate is

Hj �

µ
p

2

∂j

y
2 �p�j

x . (7)

This pulse program reads apply a pulse that rotates spin
j 90± about the y axis, followed by a pulse that rotates j
180± about the x axis. Magnetization along the positive z
axis would be rotated to the positive x axis. The Bjk gate
can be implemented using the coupling between qubits. In
terms of projection operators the Bjk gate is 1 2 E1

2E2
2 1

eiuE1
2E2

2, and the following pulse sequence:

�p�j
f 2 � ujk

2pJjk
� 2 �p�j

f 2 � p
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2 �j,k
x 2 �p

2 �j,k
2y .

(8)

f is an arbitrary phase. The notation
ujk

2pJjk
represents a

time interval during which spin evolution occurs between
spins j and k while chemical shifts and couplings between
all other spins are refocused. The superscripts j, k denotes
a pulse on both spins j and k. The final three pulses
perform a rotation around the z axis.

Finally, the bit reversal can be implemented by a series
of swap gates. Swapjk gates can be done via the following
pulse sequence:

� p

2 �j,k
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2Jjk
� 2 � p

2 �j,k
2y 2 � 1

2Jjk
� 2

� p

2 �j,k
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2Jjk
� 2 �p

2 �j,k
2x . (9)

The complete gate sequence for the three qubit QFT is

H1B12H2B13B23H3swap13 . (10)

The complete pulse program for the QFT is the com-
pilation of the pulse programs for each of the gates listed
above. Pulses were combined when possible without af-
fecting the overall unitary operator. In addition, since
the J13 coupling is small, any J13 couplings were re-
placed by a series of J12 and J23 couplings that would
perform the exact same operations, so called relayed ex-
periments [22]. For example, the swap13 gate was re-
placed by swap12swap23swap12 which enacts the exact
same unitary transformation. The pulses used for the im-
plementation were self-refocusing for all J couplings and
chemical shifts.
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FIG. 1. Real part of the density matrix of the input state for the
QFT implementation. This state, created by Hadamards on the
first and second bit after the three bits were put into a pseudopure
state, is a superposition of the j000� 1 j010� 1 j100� 1 j110�
states. Note that the input state has a periodicity of r � 2.

The implemented QFT will give the correct results to
any input state. To show the ability of the QFT to extract
periodicity we created a periodic input state of periodicity
r � 2 and implemented the QFT on that state. The peri-
odic input state was created by performing a p

2 pulse on
the first and second bits of the j000� pseudopure state. The
density matrix of the input state is shown in Fig. 1.

Figure 2 shows the density matrix after subsequent im-
plementation of the QFT. Clearly, the density matrix is
now periodic with a periodicity of q�r � 4 showing that
the QFT did indeed extract the periodicity of our input
state.

In order to measure the accuracy with which the QFT
has been performed, we need an appropriate measure.
Room temperature NMR is always very close to the fully
mixed state. All the information is contained in the de-
viation from the fully mixed state which has a relative
weight of one-millionth the weight of the fully mixed state.
Therefore, the conventional measurement of entanglement
fidelity [23,24] would give very close to one for any room

FIG. 2. Real part of the density matrix after implementation
of the QFT. Notice there is now a periodicity of q�r � 4
in the density matrix. This shows that the QFT extracted the
periodicity of the input state.
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temperature NMR experiment. A measure of accuracy
more appropriate for almost fully mixed density matrices
is [25]

C �
Tr��theory�exp�q

Tr��2
theory�

q
Tr��2

exp�

vuut Tr��2
exp�

Tr��2
initial�

. (11)

Here, � is the deviation density matrix, the density matrix,
r, of the system, minus the large identity term (in NMR,
this is called the “reduced” density matrix; it should not
be confused with the reduced density matrix obtained by
partially tracing the density matrix for a composite quan-
tum system over some of its subsystems). The first term in
C measures the correlation between the density matrices
�theory � Utheory�initialUtheory, where Utheory is the theo-
retical operator, and �initial is the experimentally obtained
initial reduced density matrix. This is weighted by the
second term, the reduction in signal over the course of the
experiment. A correlation of 1 shows that the theoreti-
cal and experimental deviation density matrices are totally
correlated. If the theoretical and experimental deviation
density matrices were anticorrelated C � 21, and if they
were uncorrelated C � 0.

In NMR, only dipolar transverse magnetization can be
detected by the dipolar coil of the NMR spectrometer.
Therefore, only single spin single quantum terms are ob-
served in the spectra. To see the other terms of the de-
viation density matrix, it is necessary to perform readout
pulses after the experiment that will rotate the unobserv-
able terms into observable ones. Here, the creation of the
input state and the implementation of the QFT was per-
formed a number of times each time applying a series of
readout pulses to reconstruct the entire deviation density
matrix. For three bits, 11 different experiments are suf-
ficient. Of the 11 experiments, one does not require a
readout pulse, while the other ten have combinations of p

2
pulses [26].

The accuracy of the implementation of the QFT is 80%
not including the swap gate, and 62% with the swap gate.
This measure reflects both imperfections in the applied
pulses and delays, as well as decoherence. Spin lattice
relaxation (T1) is not an important factor over the time
scale of the experiment. As a check to the accuracy of
the results, we also performed the QFT on a thermal state
(without a final swap), obtaining an accuracy of 87% (the
greater accuracy for the thermal state arises because no
input state need be created). The fact that our algorithm
gives the correct results for both pseudopure and thermal
states suggests that the high accuracy obtained is not due
to accidental cancellation of anomalous results.

In conclusion, using NMR, the QFT has been imple-
mented on a three bit quantum system to extract period-
icity of an input state. In addition, the correlation has
been measured. Although the correlation does not reach
that required for fault tolerant computing [27], it is high
enough to permit studies on small quantum systems includ-
ing quantum simulations. A particularly straightforward
use of the QFT is in quantum chaos: as Balazs and Voros
[28] pointed out, a simple version of the quantum bakers
map can be performed by QFTs and Schack [29] has shown
how such a quantum map might be realized on a quantum
computer [30].
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