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Resonating Valence Bond Phase in the Triangular Lattice
Quantum Dimer Model
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We study the quantum dimer model on the triangular lattice, which is expected to describe the singlet
dynamics of frustrated Heisenberg models in phases where valence bond configurations dominate their
physics. We find, in contrast to the square lattice, that there is a truly short ranged resonating valence
bond phase with no gapless excitations and with deconfined, gapped, spinons for a finite range of pa-
rameters. We also establish the presence of crystalline dimer phases.
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The search for a resonating valence bond (RVB) phase
of frustrated magnets, inspired by ideas of Pauling [1] and
begun in earnest by Anderson [2], has been one of the
recurrent themes in research on the cuprate superconduc-
tors over the past decade and somewhat more. Shortly
after Anderson’s 1987 paper on the cuprates [3], RVB the-
ory bifurcated —with a gapless RVB state (with valence
bonds on many length scales) pursued largely by means
of gauge theoretic treatments introduced by Baskaran and
Anderson [4] defining one track, while Kivelson, Rokhsar,
and Sethna [5] hewed closely to the original vision and
pursued the study of a short ranged RVB state. The latter
proposal, of a state with exponentially decaying spin-spin
correlations and no long range valence bond order, was ex-
pected to lead to a gapped collective excitation spectrum
and deconfined, gapped, spinons. Unfortunately, it turned
out that this was hard to arrange on the square lattice—the
simplest implementation of RVB ideas, the quantum dimer
model [6], exhibits crystalline order and confined spinons,
except at a critical point [7]. This fact is of a piece with an
instability of the paramagnetic phase of the O�3� nonlinear
sigma model to breaking translational symmetry due to
Berry phase effects [8].

In this Letter, we report that the simplest quantum dimer
model on the triangular lattice does possess a short ranged
RVB phase with gapped collective modes, gapped decon-
fined spinons, and spin-charge separation in its charged
excitation spectrum. We establish the presence of nearby
crystalline phases with confined spinons. We also sug-
gest that a connection, made previously by Chandra and
ourselves [9], between quantum dimer models and frus-
trated transverse field Ising models can, in this problem, be
plausibly extended to track the transition out of the RVB
phase. This conjecture is closely connected to the spinon
deconfinement mechanism proposed by Read and Sachdev
[10,11], Wen [12], Mudry and Fradkin [13], and the ideas
of Senthil and Fisher [14].

We study the Rokhsar-Kivelson quantum dimer Hamil-
tonian generalized to the triangular lattice (as the contrasts
are instructive, we will comment on the square lattice re-
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sults along the way):
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Here the sum on i runs over all of the Np plaquettes, and
the sum on a over the three different orientations of the
dimer plaquettes, namely # rotated by 0 and 660±. We
refer to the plaquettes with a parallel pair of dimers as
flippable plaquettes. As a complete orthonormal basis set
we use �jc� j c � 1, . . . , Nc�, where jc� stands for one of
the Nc possible hard-core dimer coverings of the triangular
lattice. V̂ is diagonal in this basis, with V̂ jc� � nfl�c� jc�
measuring the number, nfl�c�, of flippable plaquettes in
configuration c.

Rokhsar and Kivelson (RK) [6] derived the square lat-
tice version of Ĥ as the leading effective Hamiltonian in
the singlet manifold consisting of nearest neighbor valence
bond coverings of the lattice by utilizing their overlaps as
small parameters; subsequently, it was shown by Read and
Sachdev [15] that the purely kinetic energy (T̂ ) piece de-
scribed the 1�N dynamics of the nearest-neighbor SU�N�
bipartite Heisenberg magnet in an extreme quantum limit.
The validity of such approaches for Heisenberg magnets
depends on whether the perturbation theories remain con-
trolled even when their expansion parameters are O�1�;
this will depend on details of the lattice and the Hamilto-
nian. The perturbative scheme of RK can be generalized
to the triangular lattice; by extending the phase conven-
tion introduced by Sutherland for the square lattice [16],
one can obtain t . 0 in Eq. (1), which we assume in the
remainder.

T ¿ y, t.—At high temperatures, but less than the gap
to nonvalence bond states, static properties are obtained
by a classical sum over all dimer configurations. Most
crisply, consider T � ` where equal time correlators are
given by unweighted averages. The square lattice problem
is critical in this limit, with algebraically decaying dimer-
dimer correlations [17], whence it is not surprising that at
T � 0 it orders everywhere except at a point.
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The important observation that motivated the present
work is that the triangular lattice problem is disordered
in this limit with exponentially decaying dimer correla-
tions. For example, the correlation function for two paral-
lel dimers separated by distance x along a column can be
computed by standard Pfaffian/Grassman methods [18] as

�n�x�n�0�� � � 1
6 �2 1 G2

A�x� 1 GB�x�GB�2x� ,

G�A;B��x� �
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with g�k� � i	1 2 e2ikx 2 e2iky 2 e2i�kx1ky �
. It is easy
to see that the integrands are analytic in a finite interval
about real values of the momenta, whence the two Green
functions, G�A;B�, decay exponentially with x.

This feature already yields a high temperature RVB
phase, and makes a liquid phase far more likely at zero
temperature, to which we now turn.

Topological sectors.—An important ingredient of the
analysis of the square lattice problem is the existence of
two integer winding numbers, for periodic boundary con-
ditions, that are conserved by any local dynamics in the
dimer Hilbert space [6]. In that problem it is believed
that the simplest dynamics (the analog of our T̂ ) is ergodic
within each of the O�L2� sectors. On the triangular lat-
tice, the situation appears to be quite different. Repeating
the analysis for the square case uncovers only four sectors
corresponding to different combinations of even and odd
windings which will be equivalent in the thermodynamic
limit. With the minimal dynamics of T̂ we have found that
large classes of configurations can be connected to each
other with no further constraint. The notable exceptions
are the “staggered” configuration in Fig. 1 and its symme-
try related counterparts, which have no flippable plaquettes
whatsoever. But even here a local four dimer rearrange-
ment can be shown to allow a connection to other “generic”
states. We conjecture therefore that a general local dimer
dynamics (which may require as little as the inclusion of a
four dimer move in addition to T̂ ) will be ergodic in each
of the four topological sectors and that the dynamics in our

FIG. 1. Left: The columnar dimer state. The elementary dimer
plaquette move generated by T̂ is indicated in the bottom left pla-
quette. Such plaquette moves conserve the difference between
the number of dimers in rows marked by pluses and minuses.
Dimer moves A and B consist of shifting dimers onto the fat
and dashed bonds, respectively. Right: The staggered state with
the four-dimer move connecting it to other states.
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model is nearly so with the exception of the dynamically
disconnected nonflippable configurations. Note finally that
the Perron-Frobenius theorem implies that the ground state
of Ĥ in each sector is nodeless.

RVB phase, yc , y # t.—As in the square lattice case,
the triangular lattice dimer model has a RK point at y � t
at which the ground states are equal amplitude superpo-
sitions of all dimer coverings in a given sector. To see
this, note that a lower bound for the ground state energy
is obtained by considering each plaquette individually. A
nonflippable plaquette is annihilated by Ĥ, whereas a flip-
pable plaquette has a potential energy of y and a kinetic
energy of, at best, 2t, which implies E0 $ min�0, Np�y 2

t��. The equal amplitude state jRK� � N
21�2
c

PNc
c�1 jc�

(in any sector) has energy �RKjHjRK� � �y 2 t� �nfl�
which vanishes and saturates the lower bound at y � t.
Following our statements on the sectoral organization, we
conclude that with the exception of the nonflippable con-
figurations which trivially saturate this bound, there are
four topologically degenerate ground states in the thermo-
dynamic limit. The sum over all ground states is, for the
purposes of computing correlations diagonal in the dimer
basis, equivalent to the classical dimer problem. As the
staggered configurations are irrelevant to this sum, we con-
clude that the four generic sector states have exponentially
decaying dimer correlations — i.e., they are RVB states.

We next argue that these states are representative of a
phase at T � 0. We will argue shortly that their coexis-
tence with the staggered states is due to a first order transi-
tion out of the RVB phase exactly at the RK point —much
as in the square lattice problem. Consequently, we estab-
lish that there is a range yc , y # t over which the RVB
character of the ground state persists. Typically, one might
anticipate that a disordered ground state goes along with
a gap to local excitations (as opposed to the degeneracy
with globally distinct states). We have examined candi-
dates for collective modes in the single-mode approxima-
tion and found that they are all gapped. We note that,
in contrast, Rokhsar and Kivelson found that their criti-
cal RVB state supported gapless excitations they dubbed
resonons [19]. These together — the disordered character
of the ground state and the gap in the local excitation spec-
trum— are strong evidence that the RK point is part of an
RVB phase which is displaced to its right but will persist
to its left (in Fig. 2, inset).

To test this argument, we have carried out quantum
Monte Carlo simulations (see Fig. 2) on systems up to
36 3 36 sites at temperatures as low as t�30 using the
method described in Ref. [9]. As expected, we find that
the dimer correlations are very short ranged and practi-
cally those of the classical dimer problem, conservatively,
for 2�3 , y�t , 1. We also find a very weak temperature
dependence, suggestive of a gap. As y is reduced further,
the correlations begin to exhibit crystalline structure (see
below). At y � t we find a hysteretic (first order) transi-
tion to the staggered phase described next.
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FIG. 2. Results of quantum Monte Carlo simulations of
DA�px�, the magnitude of the Fourier transform of the
dimer-dimer correlation function along the x axis for dimers
oriented at 45± to it, for 36 3 36 sites. The abscissa px runs
from 0 (center) to p on both panels. Left panel: DA�px�
for different values of y�t at T�t � 0.033 (arbitrary units).
DA�px� remains close to the broad and featureless classical
result (crosses) down to y�t � 2�3 at least (solid curves).
At lower values of y�t (dashed curves), short range order
consistent with a

p
12 3

p
12 pattern arises. Right panel:

temperature dependence of DA�px�. For points in the RVB
phase (y�t � 0.9 is shown), no dependence is discernible.
At y�t � 1.08 (scaled down by a factor of 10 relative to
y�t � 0.9), a Bragg peak corresponding to the staggered
phase (Fig. 2) is visible at the three low temperatures (curves
indistinguishable). As the temperature is raised to T�t � 0.26,
the system enters the RVB phase. Inset: Phase diagram of the
quantum dimer model on the triangular lattice.

Staggered phase, y . t.—For y . t the lower bound
derived previously implies E0 $ 0. As the staggered states
are zero energy eigenstates of Ĥ they are the ground states
in this range. This is similar to what happens in the square
lattice problem, but the degeneracy is much lower in our
problem [O�L0� vs O�L�] and the exactness of the states
is here a consequence of dynamics rather than topology as
mentioned earlier.

An interesting consequence of this last observation is
that the excitation gap is O�L0� in system size for the stag-
gered phase [20]. At y�t � `, the lowest energy excita-
tions are the four dimer loop rearrangement of Fig. 1. At
finite but large y�t, these get dressed by additional pla-
quette flips and acquire a dispersion. This branch of soli-
tons is expected, by continuity, to be the relevant set of low
energy excitations in the staggered phase even close to the
RK point.

Columnar phase, 2y ¿ t.—To complete the phase
diagram, we move leftwards from the RVB phase in Fig. 2,
turning first to the extreme case y�t � 2`. In this limit,
the kinetic term T̂ is disregarded, and the ground states are
the maximally flippable states, i.e., those states jc� with
maximal nfl�c�.
All maximally flippable states, whose number is expo-
nential in L, can be obtained by carrying out any number
of operations of either type A or type B on the particu-
lar maximally flippable (“columnar”) state as depicted in
Fig. 1. Pairs of operations of either type as well as global
translations and rotations can be shown to be generated
by local plaquette flips, whereas a single A or B operation
generates a state in one of the other three sectors.

Turning to the case of large but finite 2y�t, we con-
struct a perturbation theory using the small parameter t�y.
Since any two maximally flippable states differ in at least
O�L� dimers, the degenerate perturbation theory is diago-
nal at any finite order. The energy shift of a state jc� at
order 2n depends on the number of flippable plaquettes,
nfl�c0�, of the states jc0� which can be reached from jc� by
at most n plaquette flips.

The result of this perturbation theory is a striking ex-
ample of the phenomenon of quantum “order by disor-
der”—we find that it selects the columnar state (Fig. 1).
States obtained by operations of types A and B are disfa-
vored at 4th and 6th order, respectively.

Transverse field Ising point, y � 0.—Together with
Chandra [9], we have recently shown that there exists an
exact correspondence between the quantum dimer model at
y � 0, and the fully frustrated transverse field Ising model
(FFTFIM) on the dual hexagonal lattice at fields G much
smaller than the magnitude of the exchange J [21]. In this
limit, the quantum ground state is constructed entirely out
of the ground states of the classical frustrated model and
the latter are (up to Ising degeneracy) in unique correspon-
dence with dimer coverings of its dual, triangular, lattice.
In our analysis we found evidence for a low temperature
crystalline “

p
12 3

p
12” phase exhibiting, in dimer lan-

guage, a triangular superlattice with a 12 site unit cell; this
phase should persist in a neighborhood of y � 0 (Fig. 2),
but the ordering we observe numerically is not conclusive.

Spinons.—As noted before, the RVB phase has a gap to
collective excitations. That is also true of the crystalline
phases. Also of interest is the question of confinement
for spinons — the gapped spin 1�2 excitations produced
by breaking a valence bond. In the dimer model, these
are represented by monomers or holons that carry a spin
and so the questions of holon and spinon confinement are
identical. This question is most easily addressed by con-
sidering the free energies of states in which two monomers
are held a fixed distance apart. At high temperatures, this
is again a classical computation [17] and it is clear that
the spinons are deconfined on the triangular lattice [22].
The contrast with the square lattice is again instructive, for
there the spinons are confined at high temperatures. (How-
ever, the confinement is very weak, only logarithmic [17],
which explains why the more disordered triangular lattice
does not confine.) At T � 0 one can readily show that the
state with an equal amplitude sum over dimer configura-
tions with two spinons localized a fixed distance apart is
an eigenstate at the RK point with an energy independent
1883



VOLUME 86, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 FEBRUARY 2001
of their separation — i.e., the spinons do not interact be-
yond one lattice constant [23]. By continuity, we expect
spinons to be deconfined in the entire RVB phase at T � 0.
From these considerations it also follows that the charged
excitation created by removing an electron from the sys-
tem will decay into a spinon and holon. Evidently, the
holons/spinons will be confined in the crystalline phases.

Spinon confinement transition.—Several authors have
suggested that a spinon confinement-deconfinement tran-
sition will be governed by an Ising (Z2) gauge theory
[10,12–14]. In our own work [9] we have found that frus-
trated transverse field Ising models (whose duals are pre-
cisely the Ising gauge theories) can provide a description
of valence bond phases of Heisenberg antiferromagnets on
their dual lattices via their connection to quantum dimer
models, such as the one considered in this paper. In the cur-
rent context, the geometrical identification used by us leads
to an intriguing observation. As already noted, the quan-
tum dimer model is equivalent to the G ø J limit of the
FFTFIM at y � 0. Interestingly, the paramagnetic ground
state of the FFTFIM at G ¿ J , when projected onto the
dimer manifold, is the equal amplitude RVB sum that is
the dimer model ground state at y � t. This suggests the
conjecture that passing between these limits in the (pro-
jected) FFTFIM gives a description of the spinon confine-
ment and translational symmetry breaking transition that
takes place at the boundary of the RVB and

p
12 3

p
12

phases.
In conclusion, we note that there are two previous

“sightings” of a spin liquid phase on the triangular lattice
in the literature, the large N , Sp�N� analysis of Sachdev
[24] and the exact diagonalization work of Misguich et al.
[25] on an S � 1�2 system with a ferromagnetic two spin
exchange frustrated by an antiferromagnetic four spin
exchange. The latter found a fourfold disordered ground
state with a spin gap, but possibly confined spinons. We
hope to clarify the connection between our results and
these in the near future. Finally, we note that along the
lines of the analysis in [6] we expect doping to give rise,
via holon condensation, to a superconducting phase on
the triangular lattice.

As we were finishing this paper, there appeared
Ref. [26], which reports neutron scattering evidence for
deconfined spinons on an anisotropic triangular lattice.
We note that the classical dimer problem in that case is
also disordered, which suggests that the results of [26]
could be understood along the lines of our analysis.
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