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Quantum Superconductor-Metal Transition in a Proximity Array
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A theory of the zero-temperature superconductor-metal transition is developed for an array of super-
conductive islands (of size d) coupled via a disordered two-dimensional conductor with the dimensionless
conductance g � h̄�e2R� ¿ 1. At T � 0 the macroscopically superconductive state of the array with
lattice spacing b ¿ d is destroyed at g , gc � 0.1 ln2�b�d�. At high temperatures the normal-state
resistance between neighboring islands at b � bc is much smaller than RQ � h�4e2.
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In two-dimensional (2D) systems, qualitative arguments
based on duality between Cooper pairs and vortices lead to
the prediction [1] that the superconductor-insulator transi-
tion happens at the universal quantum value RQ � h�4e2

of the resistance per square R�. Although a number of
experiments (cf. [2] and references therein) seem to be
in agreement with this prediction, other data demonstrate
strong deviations from it [3–6]. A phenomenological pic-
ture of duality is not able to predict the system’s parame-
ters (e.g., the value of normal-state resistance) leading to
the quantum critical point: a microscopic theory is needed
to find it. Competition between Josephson coupling EJ

and charging energy EC is known [7,8] to be the driving
mechanism of zero-temperature phase transitions between
the superconductive and insulating states in artificial arrays
[3,9], films [10,11], and bulk materials [12]. In such sys-
tems there are no free electrons at very low temperatures
due to Cooper pairing, but pairs may become localized due
to Coulomb repulsion. This is the “bosonic” mechanism
of superconductivity suppression. Homogeneously dis-
ordered superconductive films [4–6,13] present another
group of systems where quantum fluctuations lead to
destruction of superconductivity. The theory of Tc sup-
pression in such films was developed in Ref. [14]. The
qualitative idea behind this theory is that disorder-
enhanced Coulomb repulsion leads to the decrease of
Cooper attraction and thus to the decrease of Tc. The
superconductive transition temperature vanishes [14,15]
when the dimensionless film conductance g � h̄�e2R�

decreases down to gFin � �2p�22 ln2�1�Tc0ttr�, where
Tc0 is the BCS transition temperature and ttr is the elastic
scattering time. This second (“fermionic”) mechanism of
superconductivity suppression is clearly different from the
first one [7] since its basic feature lies in the disappearance
of Cooper pairs altogether. Experimental data supporting
the fermionic mechanism are reviewed in Ref. [15]. A
drawback of this theory is that it neglects quantum fluctua-
tions of the bosonic field (i.e., it can be considered as a
kind of the BCS theory with the renormalized attraction
constant). For a phenomenological comparison of the
bosonic and fermionic mechanisms, cf. Ref. [16].
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In this Letter we study a model for quantum break-
down of superconductivity, which lies in between the two
limiting cases discussed above. We consider an array of
small superconductive (SC) islands (of radius d each) in
contact with a thin film of dirty normal (N) conductor
with dimensionless conductance g ¿ 1. The distance be-
tween neighboring islands is b ¿ d. Resistance RT of
the interface between each island and the film is low:
GT � h̄�e2RT ¿ 1. Islands are thick enough to pre-
vent suppression of superconductivity inside them; the cor-
responding condition for the superconductive gap reads
DSC ¿ GT�nVi , where Vi is the island’s volume and n is
the density of states. We assume also that G2

T ¿ 4pg; the
reason for that is explained below. We show that macro-
scopic superconductivity in such a system at T � 0 be-
comes unstable with respect to quantum fluctuations at g
less than

gc � Gc

µ
1
p

ln
b
d

∂2

, (1)

where Gc � 1 will be determined below. Equation (1)
presents our main result (obtained within logarithmic accu-
racy), which shows that the critical sheet resistance R�c �
h̄�e2gc is much less than the quantum resistance RQ , pro-
vided ln�b�d� $ 3. Moreover, the same is valid for the
normal-state resistance between neighboring islands Rn �
�R�c�p� ln�b�d� � 3RQ� ln�b�d�. This result is at odds
with the usual arguments based on the model of resistively
shunted Josephson junctions [17], which predict supercon-
ductive behavior of a single junction to be preserved at
T � 0 if Rn , RQ . This discrepancy is due to the discrete
nature of charge transport between SC islands (neglected
in the model [17]).

We follow an idea presented in Ref. [18], where a
simplified version of the considered model was analyzed
(cf. also [19]). Namely, we make use of the long-range
nature of the Josephson coupling Jij between SC islands
due to the proximity effect in the film, which scales as
Jij ~ r22

ij exp�2c�rij�LT ��, where LT �
p
h̄D�T is the

thermal coherence length (cf. Refs. [18,20]), c � 1, and
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D is the diffusion constant in the film. At low tempera-
tures the interaction radius LT diverges indicating that the
position of the quantum phase transition can be found in
the mean-field approximation (MFA) analogous to the one
developed in Ref. [21]. Within the MFA, macroscopic
superconductive coherence sets in at

1
2
J �T �C �T � $ 1, where C �T � �

Z 1�T

0
dt C0�t� ,

(2)

where J �T � �
P

j Jij , and C0�t� � 	cos�u�0� 2 u�t��

is the single-island autocorrelation function of the
order parameter phase. At low interface transparen-
cies, GT ø 4pgln, one obtains [18,20] J �0� �
�G2

T�16nl2
n� �1�b2 ln�b�d��, where ln is the Cooper

repulsion constant at the energy scale vd � D�d2. In the
opposite limit of large GT we can neglect ln and obtain
J �0� solving the Usadel equation at ln�b�d� ¿ 1:

J �0� � �p4�2�gD�b2 ln�b�d� . (3)

The key point in the discussion of the T � 0 transition
is to determine C �T ! 0�. We will see that C �0� depends
exponentially on the film conductance g. If islands do not
have Ohmic contacts with the film (coupling via capaci-
tance Cj only) then C �0� � h̄�EC � h̄Cj�2e2. In our
case h̄�C �0� plays the role of an effective charging energy
E�
C of an island that survives in spite of a good conductance

around. To make ideas transparent, we first discuss a sim-
plified model [18] with sufficiently strong Cooper-channel
repulsion in the film, ln ¿ GT�4pg. Then dynamics of
the phase u�t� of a single SC island can be described by a
simple imaginary-time action,

S0�u� � 2
GA

8p

Z 1�T

0
dt dt0

cos�u�t� 2 u�t0��
�t 2 t0�2 . (4)

Here GA � G2
T�4pgln is the Andreev subgap conduc-

tance (normalized to e2�h̄) in the limit of the weak prox-
imity effect, valid under the condition ln ¿ GT�4pg
[18] (that paper contains a numerical mistake, cor-
rected in [22]). Expression (4) is valid at low energies
v # vde21�ln , at higher v # vd one has GA�v� �
�G2

T�4pg� ln�vd�v�. The above-mentioned condition
G2

T ¿ 4pg is necessary to have large conductance for
all v # vd , in order to neglect trivial Coulomb blockade
effects. For large GA one can start from the Gaussian
approximation for S0�u�t��. Then the Fourier-transformed
correlator of phase fluctuations 	juvj

2
0 � 4�jvjGA, and,
hence, C0�t� � e2 1

2
	�u�t�2u�0��2
0 ~ t24�pGA . At GA .

4�p , C �T ! 0� diverges which seems to indicate that at
large GA superconductivity is always stable at T � 0, in
agreement with [17]. The crucial point is to note that the
employed Gaussian approximation breaks down at a finite
time scale t�, due to downscale renormalization of GA.
This renormalization is caused by the periodicity of the
action S0�u� as a functional of u�t�, that is, in physical
terms, by charge quantization. This problem is analogous
1870
to the one studied by Kosterlitz [23]. Translating his
results to the present case, one gets the renormalization
group (RG) equation dGA�z ��dz � 24�p , with z �
lnvdt. This equation is to be solved with the initial
condition GA�0� � GA. As a result, at the time scale
t� � v

21
d epGA�4 the renormalized Andreev conductance

GA�t�� decays down to the value of order unity [18]. At
longer time scales C0�t� decays approximately as t22,
so the integral C �0� � t� � v

21
d epGA�4. Taking into

account that J � b22, and using Eq. (2), one obtains
[18] the critical distance between islands bc � depGA�8.

However, this result is valid under the condition
ln ¿ GT�4pg which is difficult to realize simulta-
neously with the inequality G2

T ¿ 4pg. Indeed, at
energies E ø h̄�ttr, Cooper interaction constant l�E�
is determined by the RG equation [14] which we present
in a simplified form [22] valid for ln�h̄�Ettr � ø g when
renormalization of g can be neglected:

dl

dz
� 2l2 1 l2

g, z � ln
vd

E
, lg �

1
2p

p
g

,

(5)

and l�z � 0� � ln. The fixed point solution of Eq. (5),
l � lg, is too small to fulfill both of the above inequali-
ties together. Therefore, typically the approximation of
single-parameter RG for GA is not valid, and we should
reconsider the problem of the subgap N-S conductance
in the presence of three different effects acting simulta-
neously: (i) disorder-enhanced multiple Andreev reflec-
tions [24]; (ii) Cooper-channel repulsion l which reduces
GA [18,25,26]; (iii) quantum fluctuations of the phase
u�t� which destroy coherence between Andreev reflec-
tions and suppress GA�z � at long time scales. To treat all
these effects, we employ the functional RG method for the
proximity-effect action in the Keldysh form [26].

As in the simplified model [18] discussed above, the
constant C �0� is determined (with exponential accuracy)
by the value of time t�, when GA�z � lnvdt�� becomes
of the order of 1, since at longer times C0�t� decays fast.
However, the equation for GA�z � is much more compli-
cated now as it includes an infinite set of parameters. To
derive the corresponding RG equations, we start from the
Keldysh action for a SC island in contact with a disor-
dered metal, derived in Ref. [22]. It can be represented as
a sum S � Sbulk 1 Sbound of the bulk and boundary [the
last term in Eq. (6)] contributions:

S �
ipn

4
Tr�D�=Q�2 1 4i�itz≠t 1

$
f 1

$
D �Q�

1 Tr �fTV21 �f 1
2n

l
Tr �D1sx

�D 2
ipGT

4
TrQSQ .

(6)

The bulk action, Sbulk, is a functional of three fluctuating
fields: the matter field Q�r, t, t0� in the film [its average
value gives the electron Green function G�r, r0� at r � r0],
the electromagnetic potential �f�r, t�, and the order
parameter field �D�r, t� used to decouple the quartic
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interaction vertex in the Cooper channel. Q�r, t, t0� is
a matrix in the time domain, and in the direct product
K ≠ N of the Keldysh and Nambu-Gor’kov spaces. Pauli
matrices in the K and N spaces are denoted by si and ti ,
respectively. The field Q satisfies a nonlinear constraint
Q2 � 1 and can be parametrized as Q � e2W�2LeW�2

with �W , L� � 0, where L � L0tz is the metallic saddle
point and L0�e� � sz 1 2s1F�e�, whereas the matrix
F�e� � t0f�e� 1 tzf1�e� has the meaning of a gener-
alized distribution function. The object �f � �f1,f2�T
is a vector in the Keldysh space, with f1, f2 being the
classical and quantum components of the f field.

$
f is

a shorthand notation for the matrix
$
f � f1s0 1 f2sx.

Similarly, �D � �D1, D2�T , and
$
D stands for a 4 3 4

matrix
$
D � �t1D1 2 t2D

�
1�s0 1 �t1D2 2 t2D

�
2�sx ,

where t6 � �tx 6 ity��2. In terms of the s-model
action (6), diffuson and Cooperon collective modes of the
electron system are described as slow fluctuations of the
Q matrix over the manifold Q2 � 1. The last (boundary)
term in Eq. (6) describes an elementary tunneling process
between the SC island and the N metal. The matrix QS

describes the state of the SC island. At the low-energy
scales e ø jDSCj it is expressed via the phase u�t�:
QS � 2it1eiu

$

1 it2e2iu
$

, where
$
u � u1s0 1 u2sx .

The action (6) contains a fluctuating scalar potential
field �f accounting the Coulomb interaction in the density
channel. Its main effects are (i) local electroneutrality of
the electron liquid at low frequencies and (ii) zero-bias
anomaly in the tunneling density of states [27]. Both
effects can be taken care of by means of a special
gauge transformation [28]: Qtt0 ! eiK

$
�t�tzQtt0e2iK

$
�t0�tz

and �f�t� ! �f�t� 1 ≠t
�K�t�. Choosing the “Coulomb

phase” �K�t� according to Ref. [28] one obtains that the
effect (i) is contained in the tree level of the transformed
effective action, whereas (ii) comes from the simplest
loop correction [22,28]. After the above gauge transfor-
mation the phase �u�t� enters the action in the combination
�u�t� 2 2 �K�t� only. Now the key point comes about:
the phase �u�t� is not fixed by any external source and
should be integrated out. Thus the shift of integration
variable �u�t� ! �u�t� 2 2 �K�t� eliminates �K�t� from the
action, together with both effects (i) and (ii). In other
terms, the present problem of unconstrained phase �u�t�
fluctuations can be treated as if it would be no Coulomb
interaction, since Gaussian terms in the action containing
electric field are decoupled from the redefined �u�t�
variable. It is thus legitimate to neglect electroneutrality
and calculate frequency-dependent subgap conductance
GA�v� as if the outer normal contact would be placed
at the distance Rv �

p
D�v from the SC island. We

emphasize that the same would be wrong for a usual
problem of N-S conductance between contacts with fixed
voltages, where the full size of the N film, L ¿ Rv , does
enter the result, adding the term �R��2p� ln�L�Rv� into
the resistance; cf. Ref. [26].
Next we use the RG method to integrate consecutively
over fast degrees of freedom in the action (6), which is
defined with vd being a high-energy cutoff. At each step
of the RG procedure one has to eliminate fast diffusons
and Cooperons in the N film [22], and fast (with V� .

v . V) fluctuations of the order-parameter phase �u on
the SC island (where V is the running infrared RG cutoff).
The above integration results in a correction to the action
of slow variables proportional to Dz � ln�V��V�. The
structure of the boundary term in the action (6) is not
reproduced under the RG [22]; instead higher-order terms
Tr�QSQ�n are generated, which are all relevant in the case
of the strong proximity effect. The full boundary action
can be written in the form [26]

Sbound � 2ip2g
X̀
n�1

gn�z � Tr�QSQ�n. (7)

In the model [18] of large ln discussed above, the sepa-
ration of scales was possible: at relatively short scales
Cooperon modes were the only relevant ones. Under the
RG the term g2 Tr�QSQ�2 was generated [22] and led to
a constant value of GA ¿ 1 (other gn$3 were still small).
At longer time scales fluctuations of u became important,
being determined by the action (4). In the full problem
considered now, all parameters gn are important, and all
types of fluctuations should be considered simultaneously.
The corresponding RG equations were derived in [26] for
the case when the SC island is connected to an external
circuit and its phase is fixed. In the absence of an exter-
nal contact, high-frequency fluctuations of the phase are
given by 	ui�v�uj�2v�
 � 2P

ij
v�vGA�zv� with Pv �

�s0 1 sz� coth�v�2T � 1 isy and zv � ln�vd�v� and
lead to the new term in the RG equations:

Dgn � 2
2Dz

pGA�z �

√
ngn 1 2

X̀
k�1

�21�k�n 1 2k�gn12k

!
.

(8)

It is convenient [26] to introduce a function of
an auxiliary continuous variable x according to
u�x, z � �

P`
n�1 ngn�z � sinnx. Then the full RG equation

for the function u�x, z � reads [with the left-hand side (lhs)
derived in [26] and the right-hand side (rhs) being the
Fourier transform of Eq. (8)]:

uz 1 uux 1 l�z �u�p

2 , z � sinx � 2
2

pGA�z �
F �u�x, z �� ,

(9)

where F �u�x, z �� � �u�x, z � tanx 2 u� p

2 , z � secx�x and
the initial condition is u�x, 0� � �GT�4pg� sinx. The
scale-dependent subgap conductance GA�z � is determined
by the solution of Eq. (9) as GA�z � � 4pgux� p

2 , z �.
To find the parameter C �0� with an exponential accu-

racy, we integrate Eq. (9) together with Eq. (5) for l�z �.
Written in the rescaled variables s � z�2p

p
g, w�x, s� �

2p
p
gu�x, z �, and l̃ � l�lg, Eq. (9) acquires the form
1871
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ws 1 wwx � 22
F �w�x, z ��
wx� p

2 , s�
2 l̃�s�w�p

2 , s� sinx ,

(10)

with the initial condition w�x, 0� � A sinx, where A �
GT�2

p
g ¿ 1. The solution of Eq. (10) weakly depends

on the ratio l̃�0� � ln�lg which is assumed to be not
very large. At s ø 1, the function w�x, s� is close to
the solution of Eq. (10) with zero rhs, which, at s $ A21,
is given by w�x, s� � x�s for x [ �0, p�. As s grows,
the rhs terms become increasingly important and even-
tually reduce GA�z � � 2

p
g wx� p

2 , s� down to the value
of the order of 1 at the critical value of z � � 2p

p
g sc.

Therefore, C �0� � v
21
d e2p

p
g sc . The value of sc � 1 was

determined, for several values of l̃�0�, via the numerical
solution of Eq. (10) in the limit A ! `. Using Eqs. (2)
and (3), we obtain the result (1) with Gc � s22

c :

Gc �

8<
:

0.64, for l̃�0� � 0 ;
0.73, for l̃�0� � 1 ;
0.79, for l̃�0� � 2 .

(11)

At g . gc�b� macroscopic superconductive tran-
sition occurs at T . 0. Close to the critical point
(1), at b # bc�g�, the transition temperature is pri-
marily determined by the temperature dependence of
J �T � � J �0� ln�LT�b�� ln�LT�d�. The same expression,
with LT replaced by lH �

p
p h̄c�eH, determines J �0�

in the presence of transverse magnetic field H. To find
the critical temperature Tc�b� and the critical magnetic
field Hc2�T � 0�, one uses Eq. (2) together with the
above expressions for J . The result is that both Tc�g� and
Hc2�g� scale in the same way and drop fast at b ! bc�g�:

ln
T�

Tc
� ln

F0

Hc2b2 �
2 ln�b�d�

b2
c �g��b2 2 1

, (12)

where T� � h̄D�b2. Equation (12) is valid for b�bc�g� $

�2 ln�b�d��21�2. This inequality ensures that Tc is small
compared both to T� (under this condition the proximity
coupling is long range) and to h̄�C �0�. The latter condi-
tion allows one to approximate C �T � by C �0� while deriv-
ing Eq. (12). On the other hand, our results are limited to
T $ Tloc � �h̄�ttr�e2p2g, since we neglected weak local-
ization effects. At shorter b ø bc�g�

p
lg, the transition

occurs at Tc � T�. Here LTc � b, the MFA is not appli-
cable, and the transition is governed by thermal fluctua-
tions. The magnetic field �F0�b2 drives such an array
into the superconductive glass state.

Because of the long-range nature of proximity cou-
plings, our main result (1) is robust to a moderate dis-
order in sizes and positions of the islands. With the
choice of parameters like d � 10 nm, b � 0.5 mm, and
D � 10 cm2�s; one finds the critical conductance gc . 1,
with the characteristic temperature scale T� � 30 mK.

In conclusion, we have developed a theory of quantum
superconductive-metal transition in a 2D proximity-
coupled array. This transition can be traced by continuous
variation of the carrier density in the 2D film. The critical
value of the bare film resistance R�c is nonuniversal
1872
and small compared to RQ if ln�b�d� $ 3. Under the
same condition, there exists a broad temperature range
Tloc # T # T� where localization effects are weak and
our results are applicable. The issue of universality [1]
of the renormalized critical resistance R�c�T ! 0� is
left unresolved, since we employed the approximation
of g ¿ 1. Near the quantum critical point the system
behaves as a BCS-like superconductor with the effective
Cooper attraction constant vanishing at R� ! R�c.
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