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Bilayer Coherent and Quantum Hall Phases: Duality and Quantum Disorder
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We consider a fully spin-polarized quantum Hall system with no interlayer tunneling at total filling
factor n � 1�k (where k is an odd integer) using the Chern-Simons-Ginzburg-Landau theory. Exploit-
ing particle-vortex duality and the concept of quantum disordering, we find a large number of possible
compressible and incompressible ground states, some of which may have relevance to recent experi-
ments of Spielman et al. [Phys. Rev. Lett. 84, 5808 (2000)]. We find interlayer coherent compressible
states without Hall quantization and interlayer incoherent incompressible states with Hall quantization
in addition to the usual �k, k, k� Halperin states, which are both interlayer coherent and incompressible.
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Bilayer quantum Hall systems have been a subject of
great experimental and theoretical interest [1–10] for more
than a decade. In particular, spin-polarized bilayer quan-
tum Hall systems with little or no interlayer tunneling
(DSAS � 0) at the total Landau-level filling factor n �
1 have been studied intensively because the layer index
serves as a pseudospin index with U�1� symmetry, lead-
ing to the possibility of many interesting quantum phases
and quantum phase transitions associated with it. Among
the many exotic possibilities discussed in the literature in
this context are long-range pseudospin order (the so-called
spontaneous interlayer phase coherence) associated with
the spontaneous breaking of the pseudospin U�1� symme-
try, a linearly dispersing collective Goldstone mode, bi-
layer pseudospin superfluidity, the associated Josephson
effect, topological defects (merons, Skyrmions, and vor-
tices), and a Kosterlitz-Thouless phase transition at finite
temperature. The subject is of considerable current interest
as a result of the recent appearance [11] of an experi-
mental paper reporting the possible observation in a bi-
layer tunneling measurement of the predicted Goldstone
mode at n � 1 associated with pseudospin U�1� symme-
try breaking. There have been several recent preprints [12]
providing possible theoretical explanations of the data pre-
sented in [11].

In this Letter, we consider a somewhat more general
situation (still with DSAS � 0, although a generalization
to DSAS fi 0 is straightforward) with total filling factor
n � 1�k (with k an odd integer) from a new theoretical
perspective hitherto not considered in the literature. We
extend the Chern-Simons-Landau-Ginzburg (CSLG) the-
ory for the Halperin �k, k, k� state [6,13] to describe the
possibility of quantum disordering of the charge and pseu-
dospin degrees of freedom. Our quantum disordering pro-
cedure relies on the U�1� particle-vortex duality in �2 1 1�
dimensions and leads to a large class of incompressible
and compressible bilayer states at n � 1�k; some are in-
terlayer coherent, and others are not. One of our impor-
tant conclusions is that even for DSAS � 0 the existence
0031-9007�01�86(9)�1853(4)$15.00 ©
of interlayer coherence is neither necessary nor sufficient
for the existence of an incompressible bilayer n � 1�k
quantum Hall state. It is possible to have Hall quantiza-
tion at n � 1�k without having interlayer coherence and
vice versa. We believe that this important result of ours
may have implications for the experimental observations in
Ref. [11], where the putative Goldstone mode associated
with interlayer coherence has presumably been observed
in a state which is either compressible or is very weakly
incompressible. We therefore raise the interesting (but by
no means definitive) possibility that the bilayer system in
Ref. [11] is not the Halperin �1, 1, 1� ground state, as has
been universally assumed, in which interlayer coherence
and incompressibility occur together, but is one of the new
quantum disordered interlayer coherent and compressible
states (e.g., the Hall insulator [14] state we find below)
predicted in this paper. The experimental data presented
in Ref. [11] provide some circumstantial evidence in sup-
port of such a tentative claim: (1) the n � 1 zero-bias tun-
neling conductance peak reported in [11] is much broader
than the weak (.1 kV) and shallow rxx minimum seen in
the data (rxy quantization has not been observed) even at
the very low temperature of 40 mK; (2) the zero-bias tun-
neling peak width exists [11] over Dn � 0.7 and, in fact,
contains even the rxx maximum within it, raising some
doubts about the standard interpretation of the state as the
�1, 1, 1� state, which is manifestly an incompressible state;
(3) rxx for n , 1 in Ref. [11] shows striking insulating
behavior as it increases extremely sharply with decreasing
n, indicating that it may be a Hall insulator for these n.
We point out that all the quantum disordered compressible
states found by us break translational invariance. In the
clean limit, they are Wigner crystal /charge-density-wave
(CDW)/striped phase-type states in each layer. In the
limit that disorder plays a large role (a more likely sce-
nario for Ref. [11] where the carrier density is very low
and consequently disorder effects may be important), they
are better described as disorder-induced localized phases.
We believe that some of the bilayer striped (compressible)
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interlayer coherent phases recently discussed in the litera-
ture [15] within a microscopic Hartree-Fock calculation
may actually belong to the class of translational invariance-
broken compressible coherent quantum disordered phases
we find below.

Our construction has precedents in the high-Tc

superconductivity literature [16], where it has been used
to describe spin-charge separation. Here we implement
pseudospin-charge separation to disorder the pseudospin
and charge currents separately. In the context of super-
conductivity (or superfluidity), it is clear that magnetism
and superconductivity (or superfluidity) are distinct ef-
fects. The triplet order parameter of the A phase of 3He
breaks both spin and particle number symmetries, but
these symmetries may be restored separately; restoring
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the latter alone would lead to a magnetic state of solid
helium. Our construction can be understood in a similar
vein, with the interlayer coherent �1, 1, 1� quantum Hall
state replacing triplet superconductivity. Our work is also
related to the hierarchy construction of Lee and Kane
[13], but these authors considered only the condensation
of charged vortices and Skyrmions, which does not lead
to our cornucopia of states with the same total sxy .

We begin our discussion of bilayer quantum Hall sys-
tems at n � 1�k with a CSLG theory [6,13,17] that de-
scribes incompressible interlayer coherent states with the
Halperin �k, k, k� wave function. We neglect real spin,
assuming complete spin polarization, but allow unequal
layer populations, i.e., the so-called unbalanced case, r1 fi

r2, where ri is the electron density in layer i. The
imaginary-time action for this theory is (h̄ � c � e � 1)
L �
X
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where the Ci’s are the bosonic fields which describe elec-
trons in the two layers and the final term in (1) is the
Chern-Simons term, LCS�a�, which enforces the fermionic
statistics of the electrons. The gauge fields A�1,2�

m couple
to electrons in layers 1 and 2, respectively. By choos-
ing r1 and r2 to be arbitrary we allow for charge im-
balance between the layers. For simplicity, we replace
the long-range Coulomb interaction by short-range inter-
actions. Intralayer interactions are not equal to interlayer
interactions, U fi V , so the model has only U�1� pseu-
dospin symmetry, rather than the full SU�2� which would
be obtained if U � V .

We take Ci �
p

ri eiui and introduce u �
�u1 1 u2��2, f � �u1 2 u2��2. Pseudospin U�1� is
the symmetry f ! f 1 const. When f spontaneously
chooses a direction, this symmetry is broken and the
oscillations of f describe the Goldstone mode associated
with this broken symmetry. Similarly, we define AC

m �
�A�1�

m 1 A�2�
m ��2 and AI

m � �A�1�
m 2 A�2�

m ��2. AC couples
to the total charge of the system, while AI couples to
the charge difference between the two layers, i.e., the
pseudospin. Vortices in u1 or u2 are called merons [6].
They come in four varieties since they can be either
vortices or antivortices in u1 or u2, and they have charge
6r1,2���r1 1 r2�k�. Vortices in u1 and u2 can be
combined to form a vortex in u. In pseudospin language,
they are Skyrmions [6], carrying charge 61�k. A vortex
in u1 can be combined with an antivortex in u2 to form a
vortex in f of charge �r1 2 r2����r1 1 r2�k�.

If we integrate out the amplitude fluctuations in (1) and
set �r1 1 r2��m � 1, K3 � �r1 2 r2���r1 1 r2�, we
obtain
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where yc,s are the velocities of the charge and pseudospin collective modes.
Using the standard U�1� particle-vortex duality [18] for both u and f and their vortex excitations, we rewrite (2) as
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where k0 � 1��1 2 K2
3 �, k3 � K3��1 2 K2

3 �, and F
C,I
ab is the field strength associated with bC,I

m . (To avoid clutter, we
set yc,s � 1; they may be restored by dividing all temporal derivatives by the appropriate velocity.) The fields in (3) are
related to those of (2) according to
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emnl≠nbC
l � ≠mu 2 am 2 AC

m 1 �1 2 dm0�K3�≠mf 2 AI
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The right-hand sides of the first two equations are, respec-
tively, the conserved charge and pseudospin currents of
(2). FC,I create vortices in u or f, respectively. We have
implicitly assumed that vortices in u1,2 (i.e., merons) are
higher in energy and can, therefore, be neglected. As in
the high-Tc case [16], this assumption leads to charge-
pseudospin separation and a particular form of topologi-
cal order [19]. We want to consider the more general
situation in which the lowest energy excitation is a com-
posite formed by n vortices in u and m vortices in f,
Fn,m 
 F

n
CF

m
I , where n, m are integers. In this case, we

may write the effective action as

L̃D �
1
2

rn,mj�≠m 2 inbC
m 2 imbI

m�Fn,mj
2

1
k0

4
�FC

ab�2 2 pkiemnlbC
m≠nbC

l 2 ibC
memnl≠nAC

l

1
k0

4
�FI

ab�2 2 ibI
memnl≠nAI

l 2 k3FC
0aFI

0a . (5)

When there is no vortex condensate, �Fn,m� � 0 for all
n, m, we may drop the vortex part of the action and ob-
tain the response functions from the remaining (quadratic)
terms in bC

m , bI
m:

sCC
xx � 0, sCC

xy �
1

2pk
, (6)

sIC
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, (7)
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, sII
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µ
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∂2 1
2pk

. (8)

Equations (6) tell us that we have an incompressible quan-
tum liquid with quantized Hall conductance. The first of
Eqs. (8) describes an interlayer superfluid with a singular-
ity at zero frequency due to the Goldstone mode associ-
ated with broken pseudospin symmetry. It is remarkable
that our simple analysis allows us to calculate the weight
of this mode as a function of charge imbalance between
the layers

I�r1 2 r2� �
1
k0

� I0

∑
1 2

µ
r1 2 r2

r1 1 r2

∂2∏
. (9)

This is a simple, experimentally verifiable prediction of
our theory.

Various quantum disordered phases of the �k, k, k� state
can also be described using (5). They result when Fn,m
condenses for some n, m. When this occurs, the gauge
field nbC

m 1 mbI
m acquires a gap. After integrating it

out, we obtain the response functions of the corresponding
quantum disordered phases which we discuss below. A
mean-field Landau-Ginzburg analysis is justified because
the fluctuations of bC

m are suppressed either by incom-
pressibility or the Anderson-Higgs effect associated with
the condensation of Fn,0. The fluctuations of bI
m are either

gapped (interlayer incoherent states) or are simply those of
a Goldstone mode (interlayer coherent states).

When m � 0 and n fi 0 we find that we destroy the
quantum Hall effect without destroying interlayer coher-
ence, sCC

xx � sCC
xy � 0 and sII

xx � 1
k0

i
v . So, relation (9)

will be satisfied even when the state becomes compress-
ible. As we mentioned in our introductory comments, this
state may be relevant to the experiment of [11]. Since
the flux of bC

l is fixed by e0nl≠nbC
l � r1 1 r2, it must

penetrate the Fn,0 condensate. As a result, translational
symmetry must be broken, either spontaneously by Wigner
crystallization or manifestly by disorder. In the perfectly
clean limit, the flux of bC

l enters the Fn,0 condensate in
an analog of the Abrikosov flux lattice. From (5), we see
that flux tubes in Fn,0 carry flux 2p�n and, hence, charge
1�n, equally distributed between the two layers. Hence,
this is a Wigner crystal of charge 1�n quasiparticles which
is coherent between the two layers. In the strong disorder
limit, this can be viewed as a localized phase of charge
1�n quasiparticles.

When m fi 0, we find that interlayer coherence is de-
stroyed but the quantum Hall effect is not

sCC
xx � 0, sCC

xy �
1

2pk
, (10)
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1
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µ
n
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∂2 1
2pk
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At small frequencies, sII
xx ~ iv so this phase corresponds

to an interlayer insulator, rather than a superfluid. We no-
tice the following remarkable property shared by interlayer
coherent and incoherent states: sCC

xy sII
xy � �sIC

xy �2. When
interlayer coherence is destroyed, the pseudospin Hall con-
ductances are quantized. Since a vortex corresponding to
F0,1, F0,2, . . . , F0,m21, or no vortex at all can be threaded
along either of the noncontractible loops of the torus, there
is an m2-fold ground state degeneracy in the pseudospin
sector which, when combined with the k-fold degeneracy
of the charge sector, gives a total ground state degener-
acy of km2 on the torus. For general n, m, these states
break translational invariance. However, in the case n � 0,
m fi 0, e0nl≠nbI

l � r1 2 r2, so translational symme-
try will be broken only if the layers are unbalanced, in
which case the charge difference between the layers will
be modulated.

We note that there is a straightforward generalization
akin to the hierarchy construction which involves the in-
troduction of an additional Chern-Simons field, bm, which
attaches 2l flux tubes to Fn,m. Our earlier construction
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was simply the l � 0 case. The l fi 0 modification sug-
gests a new set of states with the same conductances as
in (10) and (11), but with sII

xy (12) replaced by sII
xy �

�1�2pk� �n2 2 2lk��m2. It may be shown, using stan-
dard arguments of CSLG theory [20], that these states
have a ground state degeneracy of km2 on the torus; this
is independent of l and is the same as in the l � 0 case.
When m � 0, we obtain an interlayer coherent state with
sCC

xy � 2l�2p�2lk 6 1�.
A physical interpretation for many of these states may

be given by considering a quantum Hall state obtained
by condensing composites which consist of p electrons
in layer 1 and q electrons in layer 2. We assume that
the composite is tightly bound so that we can ignore its
internal structure. Let Cc be the operator that creates the
auxiliary boson defined by statistical transmutation of such
a composite. The CSLG theory for Cc takes the form

Lc � Cy
c �≠0 2 a0 2 pA

�1�
0 2 qA

�2�
0 �Cc

1
1

2m
j� �≠ 2 i �a 2 ip �A�1� 2 iq �A�2��Ccj

2

2
i

4pkc
emnlam≠nal . (13)

If we take kc � k�p 1 q�2, then we have a quantum Hall
state with sCC

xy � 1��2pk�. To ensure that the composite
has the correct statistics, we must have k odd. For the
particular case of quasiparticle pairs, this relation has
been discussed by Halperin in the context of Laughlin’s
wave functions [21]. Using (13), we find the response
functions of the quantum Hall state of composite objects
sCC

xy �
1

2pk , sIC
xy �

1
2pk

� p2q�
� p1q� , and sII

xy �
1

2pk
�p2q�2

�p1q�2 . By
proceeding to the dual Chern-Simons theory, we deduce
a ground state degeneracy of k�p 1 q�2 on the torus.
Hence, we find precisely the same conductance tensor
and ground state degeneracy on the torus which we found
earlier, with p 1 q � m and p 2 q � n.

Let us consider two special cases. For p � 1 and
q � 0, so that quantum liquid is in one layer only, we
have m � 1, and n � 1, so it may be described by the
condensation of a composite formed by one vortex in u

and one vortex in w, i.e., a double vortex in u1. When
p � 1 and q � 1 we have the paired state suggested in
[8]. It is described by m � 2 and n � 0, i.e., by the con-
densation of double vortices in w. In this case, we see
from (5) that when the layers are unbalanced, the charge
difference enters in a Wigner crystal of isospin 1�2 quasi-
particles (charge difference between the layers e�2).

To summarize, we have used U�1� particle-vortex
duality to extend a CSLG theory for n � 1�k (with k an
odd integer) for bilayer quantum Hall systems to discuss
the states in which either Hall quantization or interlayer
coherence (“pseudospin superfluidity”) is individually
destroyed. Our most important new conceptual results
are the identification of the theoretical possibility that
there may be n � 1 (or 1�k) bilayer pseudospin coherent
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states which are compressible [unlike the usual �1, 1, 1�
state which is incompressible and interlayer coherent] and
the observation that the experimental data presented in
Ref. [11] are not manifestly inconsistent with the exciting
prospect that such a pseudospin-coherent compressible
state (most likely a disorder-driven Hall insulating phase)
may actually be playing a role in Ref. [11].
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