
VOLUME 86, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 FEBRUARY 2001
Josephson Effect without Superconductivity: Realization in Quantum Hall Bilayers
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We show that a quantum Hall bilayer with the total filling n � 1 should exhibit a dynamical regime
similar to the flux flow in large Josephson junctions. This analogy may explain a conspicuous peak in
the interlayer tunneling conductance [Phys. Rev. Lett. 84, 5808 (2000)]. The flux flow is likely to be
spatiotemporally chaotic at low-bias voltage, which will manifest itself through broadband noise. The
peak position can be controlled by an in-plane magnetic field.

DOI: 10.1103/PhysRevLett.86.1833 PACS numbers: 73.43.–f, 73.21.–b, 74.50.+r, 95.10.Fh
Motivation.— In the classic realization of the Josephson
effect, the dynamical variable is the difference between
phases of pairing wave functions in two superconductors.
The coupling of this variable to electromagnetism is dic-
tated by general principles of gauge invariance. When
pairs tunnel from one superconductor to the other, there is
a coherent transport of the charge conjugate to this phase
difference, and the Josephson effect follows. One is led
to exactly the same equations, except with 2e ! e, when
one has a condensate of excitons —bound states of par-
ticles and holes —extending across a junction. This is be-
cause an exciton, despite its overall neutrality, does couple
to the gauge potential difference on the two sides of the
junction, as a unit charge e. In the exciton condensate the
coherent charge transfer is actually simpler than in a su-
perconductor: it requires a single tunneling act instead of
two [1]. Notwithstanding the hidden connotations, the ex-
citonic condensate can be the ground state of the junction
[2,3]. One might be optimistic that in suitable materials ex-
citon Josephson effects should be common and could exist
at much higher temperatures than conventional supercon-
ductivity, since the fundamental particle-hole interaction is
attractive.

In this Letter we argue that the first observation
of such effects has already occurred, albeit in a low-
temperature device: a bilayer quantum Hall system with
total filling factor n � 1. For small interlayer separations
this system spontaneously develops an order parameter
D � �cy

1 c2� ~ eif, where c
y
i is the electron creation op-

erator in layer i [4]. When expressed in terms of fermionic
operators x

y
" � c

y
1 , creating an electron in layer 1, and

x
y
# � c2, creating a hole in layer 2, D takes the familiar

Bardeen-Cooper-Schrieffer form �xy
" x

y
# � and enables one

to identify f with the phase of the condensate of bound
electron-hole pairs. We briefly mention that another
fruitful analogy is obtained by treating the layer index as
a pseudospin degree of freedom [4]. Along that route,
nonzero D signifies pseudospin ferromagnetism, while f

determines the direction of the in-plane component of the
“magnetization.”

The Josephson effect in the excitonic superfluid was
originally discussed in Ref. [3] and, more recently, in
0031-9007�01�86(9)�1833(4)$15.00 ©
Ref. [5]. Its appearance in the quantum Hall bilayers was
also predicted [6,7] but not immediately accepted [8].
Yet a complete formal analogy to the Josephson junction
does hold in the low-energy limit, where f obeys a
damped-driven sine-Gordon equation of motion, precisely
as the phase variable in a large-area Josephson junction.
The same equation governs many other physical systems,
e.g., sliding charge-density waves and growing crystals,
which implies broad relevance of the issues discussed
below.

The aforementioned likely candidate for the Josephson
phenomenon in a bilayer quantum Hall system is a zero-
bias peak in the differential tunneling conductance dI�dV
discovered by Spielman et al. [9]. We interpret this peak
as an analog of the flux-flow resonance in a Josephson
junction. The discovery of such a resonance in 1964 by
Eck et al. [10] was one of the first verifications of the
Josephson effect in conventional superconductors. The
experiment of Spielman et al. may well play a similar role
for the quantum Hall bilayers.

Two theoretical papers motivated by this experiment
have appeared [11,12]. Our independent analysis has some
overlap and some differences with those works. We start
with a perturbative calculation of I�V �. One of its predic-
tions is the dependence of the peak position on the external
in-plane magnetic field. In principle, that can be used to
map out the dispersion relation of the collective mode [4]
analogous to Josephson plasma oscillations. However, we
point out that the perturbation theory solution is unstable
for the low damping characteristic of low-temperature
quantum Hall systems, which leads to a spatiotemporally
chaotic flux flow and large tunneling current fluctuations.
Constructing the theory for such a complicated dynamical
regime remains a challenge. For its numerical study in a
discretized formulation (Frenkel-Kontorova model), see
Ref. [13].

Basic equations.—The general form of the equation
of motion for f can be established from considerations
of symmetry and gauge invariance. To clarify its physi-
cal meaning we choose another approach. We start with
the charge conservation equation e≠tn 1 ≠kjk 1 jtun �
0. The local excess n of the exciton density causes charge
imbalance between the layers. We can express it in terms
2001 The American Physical Society 1833
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of the local chemical potential difference m and the capaci-
tance c per unit area: n � cm�e2. The Josephson relation
entails ≠tm � h̄≠2

t f. The in-plane exciton current j con-
sists of the supercurrent js � �ers�h̄�≠xf and the con-
verted quasiparticle current jqp � 2≠xm�erxx , where rs

is the condensate phase stiffness and rxx is the resistivity
of uncondensed quasiparticles. The Josephson tunneling
current is jtun � �e�h̄�n0DSAS sin�f 2 Qx1�, where n0 is
the average electron density per layer, DSAS is the tunnel-
ing strength, and Q � eBd�h̄c is the wave vector imposed
by the in-plane component B of the external magnetic field
along the x2 axis. (Its presence is necessitated by gauge
invariance.) d is the interlayer separation. Assembling all
the terms, we obtain the equation for f (cf. Ref. [4]):

�≠2
t 2 b≠t≠

2
x 2 ≠2

x�f 1 sin�f 1 f0 2 Qx1� � 0 .
(1)

Here we expressed distances in units of “Josephson pene-
tration length” lJ � �rs�n0DSAS�1�2 and frequencies in
units of “Josephson plasma frequency” vJ � y�lJ . The
velocity parameter y � �e�h̄� �rs�c�1�2 � 0.1e2�kh̄ is
the one that enters the dispersion relation [4,6] v2�q� �
v

2
J 1 y2q2 of the plasmon, and parameter b �

�1�4p� �h̄vJ�rs� �rxxe2�h� controls dissipation [14].
Finally, we included a random phase shift f0 to represent
disorder (see below). By using the data reported in
Ref. [9] and theoretical results reviewed in Ref. [4], we
arrived at rough estimates lJ � 5 mm, vJ � 1010 s21,
and b � 0.01. Boundary conditions for Eq. (1) depend
on the sample and measurement geometry. We con-
sider the case where each layer is a square with side
L, the contact to layer 1 is along the side x1 � 2L�2,
2L�2 , x2 , L�2, and the contact to layer 2 is along
the side x1 � L�2. This deviates somewhat from the
setup used in Ref. [9] but should be inconsequential as
long as the bottleneck for the current flow is the interlayer
tunneling not the sheet conductivity. This is indeed the
case experimentally because the inequality V ¿ Irxx

is satisfied (V is the voltage difference between the
contacts). Under such conditions it is also permissible to
choose fL � fR � Vt, and use

I�t� �
Z

dx2 �≠1fR�t� 2 ≠1fL�t�	 . (2)

to calculate the tunneling current. Here fL,R � f�x1 �
6L�2, x2� and our units of voltage and electric current are
V0 � h̄vJ�e and I0 � ers�h̄, respectively.

Before we proceed to the calculations let us explain the
origin of the term “flux flow.” Let us consider the case
f0 � ≠tf � V � 0 and focus on the limit Q ¿ 1, where
the stable (ground-state) solution of Eq. (1) corresponds to
an almost uniform phase distribution j≠1fj ø 1. There is
an equivalent alternative formulation in terms of a shifted
phase u � f 2 Qx1 in which Q disappears from the ar-
gument of the sine but reemerges in the boundary condi-
tions for ≠1u � ≠1f 2 Q. In this formulation the ground
1834
state u varies rapidly and almost linearly in space, which
can be described as the 2p�Q-periodic lattice of 2p soli-
tons. A nonequilibrium state for V fi 0, where the phase
increases uniformly with the rate V , can then be visualized
as a uniform sliding of the soliton lattice—hence the term
flux flow.

Perturbation theory.—The perturbative solution of
Eq. (1) for f0 � 0 is readily done in terms of the Green’s
function

G�v, k� � �v2 1 ia�k�v 2 k2	21, a�k� � bk2.
(3)

The dc current Ī is then obtained by averaging Eq. (2) over
time. The full expression is somewhat cumbersome but for
L in the range 1 ø L ø Ī21 it reduces to [10]

Ī �
L2

2
a�Q�V

�V 2 2 Q2�2 1 a2�Q�V 2 . (4)

We estimate L � 50 and Ī � 1026 for the conditions of
Ref. [9], so L is in the required range. From Eq. (4) we
see that the resonance arises when the velocity V�Q of
the soliton train matches the plasmon velocity y (y � 1
in the adopted dimensionless units). Under this condition
the power dissipation in the system reaches a maximum.
More generally, the resonance condition is eV � h̄v0�Q�,
where v0�Q� is the DSAS ! 0 limit of the plasmon disper-
sion relation (in which the plasmon becomes the Goldstone
mode). The last conclusion was reached independently in
Refs. [11] and [12].

Let us turn to the disordered case, f0 fi 0. From Eq. (1)
and the identity sinz � Imeiz , one can see that the random
phase factor eif0 plays the same role for the disordered
system as the periodic phase factor eiQx1 for the clean
system. The Fourier expansion of eif0 can be thought of as
a set of “diffraction gratings” with different wave vectors
k, resonating whenever V � k. As a result, the resonance
is broadened in proportion to the breadth of the Fourier
spectrum of the following correlator:

s�x� � �e2if0�x�eif0�0�� , (5)

and the appropriate generalization of Eq. (4) is

Ī � 2
L2

2
Im

Z d2k
�2p�2 s̃�k 2 Q�G�V , k� . (6)

To evaluate the integral we assume that the random phase
field f0 is mainly due to static randomly positioned and
randomly oriented bound vortex pairs in the exciton con-
densate. In the context of the pseudospin ferromagnet
analogy mentioned earlier [4], such vortices were recog-
nized as merons, the topological defects of the O�3� non-
linear s model, and a remarkable fact was established:
each meron possesses an overall electric charge e�2 con-
centrated near its core. The competition of the Coulomb
repulsion between the like electric charges and attraction
between oppositely charged vortices selects the optimal
size a of meron pairs; a remains finite below the roughen-
ing transition [15] temperature Tr � 8prs�kB. From our
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point of view, in the context of the Josephson junction anal-
ogy, the meron pairs correspond to misaligned Abrikosov
vortices trapped in the junction. The I-V characteristic of
such junctions was investigated by Fistul and Giuliani [16].
These authors also attempted to go beyond the perturba-
tion theory but that part of their calculation is suspect for
reasons that will become clear shortly.

Within the chosen model of disorder, we obtain

s̃�k� � Aa2�ka�g22, g � pnma2, (7)

A 
 2pg, g ø 1 , (8)

A 
 2p ln�ka�21, g � 2 , (9)

where nm is the average density of the meron pairs. Sub-
stituting the above formulas into Eq. (6) yields, for Q � 0
and V� ø V ø b21,

Ī � I��V��V �22g , I� � L2a�V��V� . (10)

Here V� � �A�V��ag�8b	1��52g� is determined from the
condition that the variance of f, which is given by

�f2� �
1
2

Z d2k
�2p�2 s̃�k 2 Q� jG�V , k�j2, (11)

becomes of the order of 1. At V , V� the premise of
the perturbation theory �f ø 1� is violated and formula
(10) is invalid. However, V � V� is not the true boundary
of the perturbative domain. Below we will show that the
perturbation theory actually breaks down in a wider range
of voltages, V , V��, where V�� ¿ V� for small b.

In the following we focus on the case g � 2 (not an
unreasonable value [17]), where the Fourier spectrum of
eif0 is extremely broad [see Eq. (7)]. The flux-flow reso-
nance is equally broad so that it shows up as a plateau in
Ī�V � (see Fig. 1). With the chosen value of g we get the
expression (physical units temporarily restored)

I� � �ers�h̄� �L2a2�l4
J� (12)

for the height of the plateau. Similar expressions were also
derived in Refs. [11] and [12].

Even though the response at low V is beyond the reach
of the perturbation theory, the “Josephson critical current,”
which is a zero-bias parameter, can nevertheless be cal-
culated. The collective-pinning theory of Vinokur and

FIG. 1. I-V characteristic given by the perturbation theory
with g � 2 (solid line). The dashed line is a conjecture.
Koshelev [18] yields (for g � 2)

Ic � 2�ers�h̄� �L2a2�l4
J� ln2�lJ�a� . (13)

Reminiscent of the inequality between the coefficients of
static and kinetic friction, Ic exceeds I�. Note that Ic is
essentially a static quantity. It need not coincide with the
V ! 0 limit of the dynamical response formulas similar
to Eq. (6). The overall dependence of Ī on V is likely to
appear the way it is shown in Fig. 1.

Choosing g � 2 enables us to reproduce the plateau fea-
ture in the experimental data [9] (the peak in dI�dV corre-
sponds to a plateau in Ī vs V ), but the theoretical estimate
of I� is off by 2 orders of magnitude. However, this esti-
mate is highly unreliable in view of large uncertainties in
the parameters of the model and of their strong renormal-
ization by thermal fluctuations, known from the theory of
the roughening transition [15].

Instability of a tachyonic flux flow.— It is known,
although not widely appreciated, that the perturbation
theory solution for the case f0 � 0— in the form of
a moving soliton lattice—can become unstable when
the lattice velocity exceeds the velocity of Josephson
plasmon, V�Q . 1. The instability can be understood
as a parametric resonance driven by the external source
of frequency V and wave vector Q. Indeed, if V . Q,
then kinematics allows a simultaneous excitation of two
counterpropagating plasma waves, with wave vectors
k6 � �Q 6 V ��2.

For large Q the instability appears when (cf. Ref. [19])

G21�k1, k1�G21�2k2, k2� , 1�4, V . Q , (14)

and so the perturbation theory solution on the “tachyonic”
side V . Q is stable only if V . V�� � �4�b�1�3 (Q ø
V�� is assumed). This condition is much more restrictive
than the naive V 2 Q ¿ Q21 derived from the criterion
jfj ø 1.

Very close to the threshold V��, the parametric reso-
nance described above produces a small modulation of the
uniform soliton train [19], but as V moves closer to Q
other unstable modes proliferate and the system dynam-
ics quickly enters the regime of spatiotemporal chaos. In
Fig. 2 we show the comparison between the results of the
naive perturbation theory and our numerical simulations of
a one-dimensional system. As expected, they agree when
either V * V�� or Q 2 V * Q21, but at intermediate V ’s
they differ substantially and a strong broadband noise in I
sets in.

Let us now show that a similar instability must occur in
the disordered case as well. To estimate the corresponding
V��, we approximate the unstable modes by wave packets
of plasma waves with a Gaussian spread of wave vectors,
c6�k� � �2pDk2�21 exp�2jk 2 k6j

2�2�Dk�2	. If Dk
is smaller than a�k6�, then G�k, k� is approximately the
same for dominant k’s within the wave packets, and so the
left-hand side of the instability criterion (14) need not be
modified. The right-hand side, however, is changed from
1835
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FIG. 2. Top: I-V characteristic. Dots are from numerics, and
the solid line is from a full perturbation theory formula for a
finite-length system. It contains both the main resonance of
Eq. (4) and smaller “Fiske resonances.” The scatter of the data
points at V . 2.5 is due to statistical noise. The parameters of
simulation are L � 20, Q � 3, b � 0.01, and f0 � 0. Bot-
tom: an example of the frequency spectrum of I�t� in the above
simulation. Note the narrow peak at v equal to the applied volt-
age V � 4 and the strong broadband noise at smaller v’s.

1�4 to �1�2p�s̃�V 2 Q� �Dk�2 and the threshold voltage
becomes V�� � b21�2s̃21�8. Thus, for small b the low-
est voltage at which the perturbation theory is expected to
apply is V�� ¿ V�. Our conjecture on the behavior of Ī in
the interval V� , V , V�� (depicted in Fig. 1) is based on
a notion that chaos leads to a higher effective dissipation
[see Fig. 2 (top) and Refs. [13] and [19] ]. The suppres-
sion of Ī below V� is an educated guess motivated by the
work of Fistul and Giuliani [16].

The probable observation of Josephson effects without
bulk superconductivity in a bilayer quantum Hall ferro-
magnet paves the way for exploring a vast variety of other
Josephson phenomena in this system. It should also inspire
attempts to realize them in other systems. The complex-
ity and appeal of the emerging theoretical issues (not fully
appreciated in the current literature), as well as their re-
1836
currence in other contexts warrant further study. From this
perspective the lack of quantitative agreement between the
perturbation theory and experiment is stimulating.
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